Moscow University Biological Sciences Bulletin

, Volume 73, Issue 4, pp 217–221 | Cite as

The First Record of Thalassiosira angulata (Bacillariophyceae) Bloom in the White Sea: Spatial Distribution and Associated Species

  • I. G. RadchenkoEmail author
  • V. P. Shevchenko
  • M. D. Kravchishina
  • V. V. Il’inskii
  • A. P. Georgiev
  • A. V. Tolstikov
  • A. L. Chul’tsova
  • L. V. Ilyash


Species composition and biomass of phytoplankton (Bsum), concentration of chlorophyll “a” and nutrients, and hydrophysical conditions were studied on July 5–12, 2011, at 29 stations in the White Sea. The chlorophyll “a” concentration and Bsum in the surface water layer corresponded to the level of phytoplankton bloom (>1 mg/m3 and >30 mg C/m3, respectively), except for two stations. For the first time, the dominance of diatom Thalassiosira angulata by biomass was recorded for a vast area of the White Sea; in the surface layer, the abundance and biomass of this species reached up to 24 × 103 cells/L and 34.56 mg C/m3, respectively. Even higher values (179 × 103 cells/L and 258 mg C/m3) were noted at one of the coastal stations at a 3-m depth. The stability of the water column (positive relation) and salinity (negative relation) were the main factors affecting the spatial variability of the T. angulata biomass.


White Sea phytoplankton bloom phytoplankton community structure Thalassiosira angulata nutrients hydrophysical conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger, V., Dahle, S., Galaktionov, K., Kosobokova, X., Naumov, A., Rat’kova, T., Savinov, V., and Savinova, T., White Sea. Ecology and Environment, St. Petersburg-Tromsø: Derzavets Publisher, 2001.Google Scholar
  2. 2.
    Pantyulin, A.N., Hydrological system of the White Sea, Oceanology, 2003, vol. 43, suppl., pp. S1–S14.Google Scholar
  3. 3.
    Ilyash, L.V., Belevich, T.A., Zhitina, L.S., Radchenko, I.G., and Ratkova, T.N., Phytoplankton of the White sea, in The Handbook of Environmental Chemistry, Barceló, D. and Kostianoy, A.G., Eds., Berlin–Heidelberg: Springer, 2018. doi 10.1007/698_2018_320Google Scholar
  4. 4.
    Ilyash, L.V., Radchenko, I.G., Shevchenko, V.P., Zdorovennov, R.E., and Pantyulin, A.N., Contrasting summer phytoplankton communities in stratified and mixed waters of the White Sea, Oceanology, 2014, vol. 54, no. 6, pp. 730–738.CrossRefGoogle Scholar
  5. 5.
    Ilyash, L.V., Zhitina, L.S., Belevich, T.A., Shevchenko, V.P., Kravchishina, M.D., Pantyulin, A.N., Tolstikov, A.V., and Chultsova, A.L., Spatial distribution of the phytoplankton in the White sea during atypical domination of dinoflagellates (July 2009), Oceanology, 2016, vol. 56, no. 3, pp. 372–381.CrossRefGoogle Scholar
  6. 6.
    Ilyash, L.V., Belevich, T.A., Stupnikova, A.N., Drits, A.V., and Flint, M.V., Effects of local hydrophysical conditions on the spatial variability of phytoplankton in the White sea, Oceanology, 2015, vol. 55, no. 2, pp. 216–225.CrossRefGoogle Scholar
  7. 7.
    IPCC, Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L., Eds., New York: Cambridge Univ. Press, 2007.Google Scholar
  8. 8.
    Lovejoy, C., Vincent, W.F., Bonilla, S., Roy, S., Martineau, M.J., Terrado, R., Potvin, M., Massana, R., and Pedros-Alio, C., Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic seas, J. Phycol., 2007, vol. 43, no. 1, pp. 78–89.CrossRefGoogle Scholar
  9. 9.
    de Boyer Montégut, C., Madec, G., Fischer, A.S., Lazar, A., and Iudicone, D., Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology, J. Geophys. Res., 2004, vol. 109, no. C12. doi doi 10.1029/2004JC002378Google Scholar
  10. 10.
    Grasshoff, K., Ehrhardt, M., and Kremling, K., Methods of Seawater Analysis, Weinheim–New York–Chiester–Brisbane–Singapore–Toronto: Wiley-VCH, 1999.CrossRefGoogle Scholar
  11. 11.
    Arar, E.J. and Collins, G.B., Method 445.0. In vitro Determination of Chlorophyll “a” and Pheophytin “a” in Marine and Freshwater Algae by Fluorescence. Revision 1.2, Cincinnati: U.S. Environmental Protection Agency, 1997.Google Scholar
  12. 12.
    Hillebrand, H., Dürselen, C.-D., Kirschtel, D., Pollingher, U., and Zohary, T., Biovolume calculation for pelagic and benthic microalgae, J. Phycol., 1999, vol. 35, no. 2, pp. 403–424.CrossRefGoogle Scholar
  13. 13.
    Menden-Deuer, S. and Lessard, E.J., Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton, Limnol. Oceanogr., 2000, vol. 45, no. 3, pp. 569–579.CrossRefGoogle Scholar
  14. 14.
    Simonsen, R., The diatom plankton of the Indian Ocean Expedition of R.V. 'Meteor' 1964–65, Meteor Forschungsrgeb. (D. Biol.), 1974, vol. 19, pp. 1–66.Google Scholar
  15. 15.
    Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontol. Electron., 2009, vol. 4, no. 1.Google Scholar
  16. 16.
    Clarke, K.R. and Gorley, R.N., PRIMER v6: User Manual/Tutorial, Plymouth: PRIMER-E, 2006.Google Scholar
  17. 17.
    Sapozhnikov, V.V., Arzhanova, N.V., and Mordasova, N.V., Hydrochemistry and production-destruction processes in the White sea, in The Handbook of Environmental Chemistry, Barceló, D. and Kostianoy, A.G., Eds., Berlin–Heidelberg: Springer, 2018. doi 10.1007/698_2018_302Google Scholar
  18. 18.
    Mitchell, B.G. and Holm-Hansen, O., Observations and modeling of the Antarctic phytoplankton crop in relation to mixing depth, Deep-Sea Res., 1991, vol. 38, nos. 8–9, pp. 981–1007.CrossRefGoogle Scholar
  19. 19.
    Hasle, G.R., Some Thalassiosira species with one central process (Bacillariophyceae), Norw. J. Bot., 1978, vol. 25, no. 2, pp. 77–110.Google Scholar
  20. 20.
    Park, J.S., Jung, S.W., Lee, S.D., Yun, S.M., and Lee, J.H., Species diversity of the genus Thalassiosira (Thalassiosirales, Bacillariophyta) in South Korea and its biogeographical distribution in the world, Phycologia, 2016, vol. 55, no. 4, pp. 403–423.CrossRefGoogle Scholar
  21. 21.
    Rat'kova, T.N., Phytoplankton composition in the White Sea Basin in summer-autumn 1998 and 1999, Berichte Polarforsch., 2000, vol. 359, pp. 97–109.Google Scholar
  22. 22.
    Semina, H.J., Iconographia Diatomologica, vol. 10: SEM-Studied Diatoms of Different Regions of the World Ocean, Koeltz Scientific Books, 2003.Google Scholar
  23. 23.
    Gogorev, R.M., Late spring ice diatoms of the White Sea, Nov. Sist. Nizshikh Rast., 1998, vol. 32, pp. 8–13.Google Scholar
  24. 24.
    Filatov, N., Pozdnyakov, D., Johannessen, O.M., Pettersson, L.H., and Bobylev, L.P., Oceanographic regime, in White Sea. Its Marine Environment and Ecosystem Dynamics Influenced by Global Change, Filatov, N.N. and Pozdnyakov, D.V., Eds., London: Springer-Verlag London Ltd, 2005, pp. 73–154.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • I. G. Radchenko
    • 1
    Email author
  • V. P. Shevchenko
    • 2
  • M. D. Kravchishina
    • 2
  • V. V. Il’inskii
    • 1
  • A. P. Georgiev
    • 3
  • A. V. Tolstikov
    • 3
  • A. L. Chul’tsova
    • 4
  • L. V. Ilyash
    • 1
  1. 1.Department of BiologyMoscow State UniversityMoscowRussia
  2. 2.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  3. 3.Northern Water Problems Institute, Karelian Research CenterRussian Academy of SciencesPetrozavodsk, Republic of KareliaRussia
  4. 4.Northwestern Branch of Shirshov Institute of OceanologyRussian Academy of SciencesArkhangelskRussia

Personalised recommendations