Advertisement

Moscow University Biological Sciences Bulletin

, Volume 73, Issue 4, pp 229–235 | Cite as

A Study on Allometry of Wing Shape and Venation in Insects. Part 1. Hymenoptera

  • O. A. BelyaevEmail author
  • S. E. Farisenkov
Entomology

Abstract

Allometry of wing shape is very common among insects, since wing-air interaction and aerodynamics of flight are largely depend on body size. In the present work we have studied allometry of wing shape and venation on wide range of representatives of Hymenoptera. It has been shown that by increase in body size, the aspect ratio of forewings grows, and the center of the area shifts towards the base; similar parameters of hindwings do not correlate with size of the insects. Geometric morphometric methods permitted to reveal allometric tendencies in arrangement of wing vein elements common for the hymenopterans studied. At increase of body size, the cells of central region of forewings stretch in longitudinal direction, the cells of distal and proximal regions reduce in length. In the case of hindwings, most families with increase in body size show elongation of the cells in proximal zone and shortening of the cells in distal zone.

Keywords

Hymenoptera body size allometry geometric morphometrics wing shape wing venation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmidt-Nielsen, K., Scaling: Why Is Animal Size So Important?, Cambridge: Cambridge Univ. Press, 1984.CrossRefGoogle Scholar
  2. 2.
    Cheverud, J.M., Relationships among ontogenetic, static and evolutionary allometry, Am. J. Phys. Anthropol., 1982, vol. 59, no. 2, pp. 139–149.CrossRefGoogle Scholar
  3. 3.
    Shingleton, A.W., Frankino, W.A., Thomas, F.T., Nijhout, H.F., and Emlen, D.J., Size and shape: The developmental regulation of static allometry in insects, BioEssays, 2007, vol. 29, no. 6, pp. 536–548.CrossRefGoogle Scholar
  4. 4.
    Dujardin, J.P., Le Pont, F., and Baylac, M., Geographical versus interspecific differentiation of sand flies: A landmark data analysis, Bull. Entomol. Res., 2003, vol. 93, no. 1, pp. 87–90.CrossRefGoogle Scholar
  5. 5.
    Chin, D.D. and Lentink, D., Flapping wing aerodynamics: From insects to vertebrates, J. Exp. Biol., 2016, vol. 219, no. 7, pp. 920–932.CrossRefGoogle Scholar
  6. 6.
    Harbig, R.R., Sheridan, J., and Thompson, M.C., Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms, J. Fluid Mech., 2013, vol. 717, pp. 166–192.CrossRefGoogle Scholar
  7. 7.
    Danforth, B.N., The evolution of hymenopteran wings: The importance of size, J. Zool. (London), 1989, vol. 218, no. 2, pp. 247–276.CrossRefGoogle Scholar
  8. 8.
    Francuski, L., Vujic, A., Kovacevic, A., Ludoški, J., and Milankov, V., Identification of the species of the Cheilosia variabilis group (Diptera, Syrphidae) from the Balkan Peninsula using wing geometric morphometrics, with the revision of status of C. melanopa redi Vujic, 1996, Contr. Zool., 2009, vol. 78, no. 3, pp. 129–140.Google Scholar
  9. 9.
    Mielczarek, L.E., Oleksa, A., Meyza, K., and Tofilski, A., Seasonal polyphenism in Eristalis pertinax (Diptera: Syrphidae), Eur. J. Entomol., 2016, vol. 113, pp. 489–496.CrossRefGoogle Scholar
  10. 10.
    Pretorius, E., Using geometric morphometrics to investigate wing dimorphism in males and females of hymenoptera—a case study based on the genus Tachysphex Kohl (Hymenoptera: Sphecidae: Larrinae), Aus. J. Entomol., 2005, vol. 44, no. 2, pp. 113–121.CrossRefGoogle Scholar
  11. 11.
    Gidaszewski, N.A., Baylac, M., and Klingenberg, C.P., Evolution of sexual dimorphism of wing shape in the Drosophila melanogaster subgroup, BMC Evol. Biol., 2009, vol. 9, p. 110.CrossRefGoogle Scholar
  12. 12.
    Warton, D.I., Duursma, R.A., Falster, D.S., and Taskinen, S., Smatr 3—an R package for estimation and inference about allometric lines, Methods Ecol. Evol., 2012, vol. 3, no. 2, pp. 257–259.CrossRefGoogle Scholar
  13. 13.
    Pavlinov, I.Ya. and Mikeshina, N.G., Principles and methods of geometric morphometry, Zh. Obshch. Biol., 2002, vol. 63, no. 6, pp. 473–493.Google Scholar
  14. 14.
    Zelditch, M.L., Swiderski, D.L., Sheets, H.D., and Fink, W.L., Geometric Morphometrics for Biologists: A Primer, New York: Elsevier Academic Press, 2004.Google Scholar
  15. 15.
    tpsDig2. Morphometrics at SUNY Stony Brook, 2013. http://life.bio.sunysb.edu/morph. Accessed August 3, 2018.Google Scholar
  16. 16.
    tpsDig2. Morphometrics at SUNY Stony Brook, 2015. http://life.bio.sunysb.edu/morph. Accessed August 3, 2018.Google Scholar
  17. 17.
    Arnqvist, G. and Martensson, T., Measurement error in geometric morphometrics: Empirical strategies to assess and reduce its impact on measures of shape, Acta Zool. Acad. Sci. Hung., 1998, vol. 44, nos. 1–2, pp. 73–96.Google Scholar
  18. 18.
    Klingenberg, C.P., MorphoJ: An integrated software package for geometric morphometrics, Mol. Ecol. Resour., 2011, vol. 11, no. 2, pp. 353–357.CrossRefGoogle Scholar
  19. 19.
    Glantz, S.A., Primer of Biostatistics, New York: McGraw-Hill, 1997, 4th ed.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of Entomology, School of BiologyMoscow State UniversityMoscowRussia

Personalised recommendations