Advertisement

Cytology and Genetics

, Volume 54, Issue 1, pp 55–62 | Cite as

The Polyclonal Structure of Unisexual Prussian Carp (Carassius gibelio (Bloch, 1782)) Settlements in Northern Ukraine: Comparison Analysis of Allozyme Markers and Chromosome Numbers

  • S. V. MezherinEmail author
  • P. P. Pukhtaevych
  • S. V. Kokodiy
Article
  • 7 Downloads

Abstract

An allozyme analysis of five sets of polymorphic loci of the gynogenetic Prussian carp C. gibelio from Northern Ukraine made it possible to identify within this species 29 genetic forms of clonal and recombinant nature, which can be divided into two categories. The first one is represented by the clonal C. gibelio-1 biotype with the modal number of 156 chromosomes and several unique alleles, which distinctly differentiate this biotype from the diploid goldfish C. auratus. The second category is represented by the group of 28 biotypes designated as C. gibelio-2 of a clonal and recombinant nature. Specimens of this group have no allozymes that distinguish them from C. auratus. Within this group, 158 and 160 modal chromosome groups were discovered; each one has special genotypic combination for locus Aat-1. Apparently, the series of biotypes, which are differentiated by the modal chromosome number, emerged independently as a result of hybridization of different pairs of parental species way back in Eastern Asia. At the same time, the emergence of recombinant individuals with unique combinations of genotypes of five protein loci and their own chromosome number within the C. gibelio-2 clone is a secondary event related to the implementation of the inheritance mechanism, which combines cloning and Mendelian inheritance. There are reasons to believe that this mechanism is implemented in pseudogamous crosses of genetically close C. gibelio-2 females with C. auratus males, while the cloning takes place in crosses of C. gibelio-2 females with more distant C. carassius males.

Keywords:

cloning populations crucian carps Carassius allozymes chromosome numbers 

Notes

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

REFERENCES

  1. 1.
    Kobayashi, H., Nakano, K., and Nakamura, M., On the hybrids, 4n ginbuna (Carassius auratus langsdorfii) × kinbuna C. auratus subsp.), and their chromosomes, Bull. Japan Soc. Sci. Fish., 1977, vol. 43, no. 301, pp. 31–37.CrossRefGoogle Scholar
  2. 2.
    Lin, S.M., Sezaki, K., Hashimoto, K., and Nakamura, M., Distribution of polyploids of “ginbuna” Carassius auratus langsdorfii in Japan, Bull. Jap. Soc. Sci. Fish., 1980, vol. 46, no. 4, pp. 413–418.CrossRefGoogle Scholar
  3. 3.
    Shimuzu, Y., Oshiro, O., and Sakaizumi, M., Electrophoretic studies of diploid, triploid, and tetraploid forms of the Japanese silver crucian carp, Carassius auratus langsdorfii,Jap. J. Ichthyol., 1993, vol. 40, no. 1, pp. 65–75.Google Scholar
  4. 4.
    Murakami, M., Matsuda, C., and Fujitani, H., The maternal origins of the triploid ginbuna (Carassius auratus langsdorfii): phylogenetic relationships within the C. auratus taxa by partial mitochondrial D-loop sequencing, Genes Genet. Syst., 2001, vol. 76, no. 1, pp. 25–32.  https://doi.org/10.1266/ggs.76.25 CrossRefPubMedGoogle Scholar
  5. 5.
    Cherfas, N.B., Gynogenesis in fishes, in Genetic Basis of Fish Selection, Kirpichnikov, V.S., Ed., Berlin: Springer-Verlag, pp. 255–273.Google Scholar
  6. 6.
    Kottelat, M. and Freyhof, J., Handbook of European Freshwater Fishes, Chester, 2007.Google Scholar
  7. 7.
    Mezhzherin, S.V., Kokodiy, S.V., Kulish, A.V., Verlatiy, D.B., and Fedorenko, L.V., Hybridization of crucian carp (Carassius carassius (Linnaeus, 1758)) in Ukrainian reservoirs and genetic structure of hybrids, Cytol. Genet., 2012, vol. 46, no. 1, pp. 37–46.  https://doi.org/10.3103/S0095452712010069 CrossRefGoogle Scholar
  8. 8.
    Jakovlič, I. and Gui, J.-F., Recent invasion and low level of divergence between diploid and triploid forms of Carassius auratus complex in Croatia, Genetica, 2011, vol. 139, no. 6, pp. 789–804.  https://doi.org/10.1007/s10709-011-9584-y CrossRefPubMedGoogle Scholar
  9. 9.
    Qin, Q., Wang, J., Hu, M., Huang, S., and Liu, S., Autotriploid origin of Carassius auratus as revealed by chromosomal locus analysis, Sci. China Life Sci., 2016, vol. 59, no. is. 6, pp. 622–626.  https://doi.org/10.1007/s11427-016-5040-7 CrossRefGoogle Scholar
  10. 10.
    Cherfas, N.B., Natural tripody in the females of the unisexual variety of the silver crucian carp (Carassius auratus gibelio Aloch), Genetika, 1966, vol. 2, no. 5, pp. 16–24.Google Scholar
  11. 11.
    Vujosevich, M.S., Zivkovic, S., Rimsa, D., Rinsa, D., Jurišič, S., and Cakič, P., The chromosomes of 9 fish species from Dunav basin in Yugoslavia, Ichthyologia, 1983, vol. 15, no. 2, pp. 29–40.Google Scholar
  12. 12.
    Fister, S. and Soldatovic, B., Karyotype analysis of a gynogenetic population of Carassius auratus gibelio, Bloch (Cyprinidae) from Pancevacki Rit, Acta Veterinaria (Beograd), 1989, vol. 39, nos. 5–6, pp. 259–268.Google Scholar
  13. 13.
    Boroń, A., Karyotypes of diploid and triploid silver crucian carp Carassius auratus gibelio (Bloch), Cytobios, 1994, vol. 80, pp. 117–124.Google Scholar
  14. 14.
    Boroń, A., Szlachciak, J., Juchno, D., Grabowska, A., Jagusztyn, B., and Porycka, K., Karyotype, morphology, and reproduction ability of the Prussian carp, Carassius gibelio (Actinopterygii: Cypriniformes: Cyprinidae), from unisexual and bisexual populations in Poland, Acta Ichthyol. Piscat., 2011, vol. 41, no. 1, pp. 19–28.  https://doi.org/10.3750/aip2011.41.1.04 CrossRefGoogle Scholar
  15. 15.
    Mezhzherin, S.V. and Kokodiy, S.V., On the polyphyletic origin of the European triploid crucian carp Carassius gibelio, Rep. Nat. Acad. Sci. Ukr., 2006, no. 7, pp. 169–174.Google Scholar
  16. 16.
    Takada, M., Tachihara, K., Kon, T., and Yamamoto, G., Biogeography and evolution of the Carassius auratus-complex in East Asia, BMC Evol., Biol., 2010, vol. 10, no. 7.  https://doi.org/10.1186/1471-2148-10-7 CrossRefGoogle Scholar
  17. 17.
    Rylková, K., Kalous, L., Bohlen, J., Lamatsch, D.K., and Petrtyl, M., Phylogeny and biogeographic history of the cyprinid fish genus Carassius (Teleostei: Cyprinidae) with focus on natural and anthropogenic arrivals in Europe, Aquaculture, 2013, vol. 380, no. 3, pp. 13–20.  https://doi.org/10.1016/j.aquaculture.2012.11.027 CrossRefGoogle Scholar
  18. 18.
    Toth, B., Varakoni, E., Hidas, A., Meleg, E.E., and Varadi, L., Genetic analysis of offspring from intraand interspecific crosses of Carassius auratus gibelio by chromosome and RAPD analysis, J. Fish Biol., 2005, vol. 66, no. 3, pp. 784–797.  https://doi.org/10.1111/j.0022-1112.2005.00644.x CrossRefGoogle Scholar
  19. 19.
    Kalous, L. and Knytl, M., Karyotype diversity of the offspring resulting from reproduction experiment between diploid male and triploid female of silver Prussian carp, Carassius gibelio (Cyprinidae, Actiopterygii), Folia Zool., 2011, vol. 60, no. 2, pp. 115–121.  https://doi.org/10.25225/fozo.v60.i2.a5.2011 CrossRefGoogle Scholar
  20. 20.
    Boroń, A., Cytogenetic characterization of the loaches of the genera Sabanejewia, Misgurnus and Barbatula (Pisces, Cobitidae), Folia Zool., 2000, vol. 49, no. 1, pp. 37–44.Google Scholar
  21. 21.
    Ráb, P. and Roth, P., Coldblooded vertebrates, in Methods of Chromosome Analysis, Baliček, P., Forejt, J., and Rubeš, J., Eds., Cytogenet. Sect. Cs. Biol. Soc., 1988, pp. 115–124.Google Scholar
  22. 22.
    Cucchi, C. and Baruffaldi, A.A., New method for karyological studies in teleost fishes, J. Fish. Biol., 1990, vol. 37, no. 1, pp. 71–75.CrossRefGoogle Scholar
  23. 23.
    Vasil’eva, V.P., Gold crucian carp, Carassius carassius—diploid or tetraploid species?, Dokl. Akad. Nauk SSSR, 1985, vol. 283, no. 1, pp. 228–230.Google Scholar
  24. 24.
    Mezhzherin, S.V. and Kokodiy, S.V., Genetic structure of silver Prussian carp Carassius (superspecies auratus) (Linnaeus, 1758) colonies from the Middle Dnieper basin, Russ. J. Genet., 2010, vol. 46, no. 6, pp. 725–731.CrossRefGoogle Scholar
  25. 25.
    Stock, M., Ustinova, J., Betto-Colliard, C., Schartl, M., Moritz, C., and Perrin, N., Simultaneous Mendelian and clonal genome transmission in a sexually reproducing, all-triploid vertebrate, Proc. Biol. Sci., 2012, vol. 279, no. 1732, pp. 1293–1299.  https://doi.org/10.1098/rspb.2011.1738 CrossRefGoogle Scholar
  26. 26.
    Brykov, V.A., Apalikova, O.V., Eliseikina, M.G., and Kovalev, M.Yu., Mitochondrial DNA variation in diploid and triploid forms of silver crucian carp Carassius auratus gibelio,Russ. J. Genet., 2005, vol. 41, no. 6, pp. 811–816.Google Scholar
  27. 27.
    Szabelska, A., Kirtiklis, L., and Przybył, A., 5S rDNA sequence shows differences between diploid and triploid Prussian carp Carassius gibelio (Teleostei, Cyprinidae), Turk. J. Fish. Aquat. Sci., 2017, vol. 17, no. 6, pp. 1127–1133.  https://doi.org/10.4194/1303-2712-v17_6_06 CrossRefGoogle Scholar
  28. 28.
    Litvinchuk, S. and Rosanov, Yu.M., Natural autotryploidy in the Danube newt Triturus dobrogicus (Salamandridae), Russ. J. Herpetol., 2001, vol. 8, no. 1, pp. 74–76.Google Scholar
  29. 29.
    Litvinchuk, S., Skorikov, D., and Rosanov, Yu.M., Natural spontaneous autotripoloidy in the genus Pelophylax (Anura: Ranidae), Russ. J. Herpetol., 2015, vol. 22, no. 4, pp. 318–320.Google Scholar

Copyright information

© Allerton Press, Inc. 2020

Authors and Affiliations

  • S. V. Mezherin
    • 1
    Email author
  • P. P. Pukhtaevych
    • 1
  • S. V. Kokodiy
    • 1
  1. 1.Schmalhausen Institute of Zoology, National Academy of ScienceKyivUkraine

Personalised recommendations