Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Changes in the Inflammatory Status in White Adipose Tissue of Rats with Diet-Induced Obesity at Different Regimens of Melatonin Administration

  • 6 Accesses


The effects of different regimens (morning and evening) of melatonin administration (30 mg/kg/day during 7 weeks) on the course of inflammation processes in visceral white adipose tissue (the presence of macrophages that formed crown-like structures around the adipocytes, fibrosis level and mast cell numbers in white adipose tissue, and the content of proinflammatory (IL-1β, IL-8, tumor necrosis factor α, and interferon γ) and anti-inflammatory (IL-4 and IL-10) cytokines in blood serum) was analyzed in rats with obesity induced by a high-calorie diet. Melatonin administration was followed by changes in the numbers of macrophages and mast cells in white adipose tissue of obese rats, and decreases of collagen fiber content (fibrosis) and the area of adipocytes were also demonstrated. Melatonin administration in the evening (1 h before the lights off) turned out to be more efficient than the morning administration (1 h after the lights on). Moreover, the level of anti-inflammatory cytokines increased in the blood serum of obese rats after melatonin administration, whereas the level of proinflammatory cytokines decreased at the same time. This demonstrates the anti-inflammatory effects of melatonin in the context of obesity development and serves as a theoretical prerequisite for further consideration of the possible use of melatonin in obesity treatment.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1

    Caër, C., Rouault, C., Le Roy, T., Poitou, C., Aron-Wisnewsky, J., Torcivia, A., Bichet, J., Clément, K., Guerre-Millo, M. and Andre, S. Immune cell-derived cytokines contribute to obesity-related inflammation, fibrogenesis and metabolic deregulation in human adipose tissue, Sci. Rep., 2017, vol. 7, no. 3000, pp. 1–11.

  2. 2

    Rodríguez, A., Ezquerro, S., Méndez-Giménez, L., Becerril, S. and Frühbeck, G., Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism, Am. J. Physiol.—Endocrinol. Metab., 2015, vol. 309, no. 8, pp. E691–E714.

  3. 3

    Kang, Y.E., Kim, J.M., Joung, K.H., Lee, J.H., You, B.R., Choi, M.J., Ryu, M.J., Ko, Y.B., Lee, J., Ku, B.J., Shong, M., Lee, K.H., and Kim, H.J., The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance in modest obesity and early metabolic dysfunction, PLoS One, 2016, vol. 11, no. 4. e0154003.

  4. 4

    Żelechowska, P., Agier, J., Kozłowska, E., and Brzezińska-Błaszczyk, E., Mast cells participate in chronic low-grade inflammation within adipose tissue, Obesity Rev., 2018, vol. 19, no 5, pp. 686–697.

  5. 5

    Apostolopoulos, V., de Courten, M. P., Stojanovska, L., Blatch, G. L., Tangalakis, K. and de Courten, B., The complex immunological and inflammatory network of adipose tissue in obesity, Mol. Nutr. Food Res., 2016, vol. 60, no. 1, pp. 43–57.

  6. 6

    Cinti, S., Mitchell, G., Barbatelli, G., Murano, I., Ceresi, E., Faloia, E., Wang, S., Fortier, M., Green-berg, A., and Obin, M., Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans, J. Lipid. Res., 2005, vol. 46, pp. 2347–2355.

  7. 7

    Jiang, C, Qu, A., Matsubara, T., Chanturiya, T., Jou, W., Gavrilova, O., Shah, Y, and Gonzalez, F.J., Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice, Diabetes, 2011, vol. 60, no. 10, pp. 2484–2495.

  8. 8

    Zhou, Y., Yu, X., Chen, H., Sjцberg, S., Roux, J., Zhang, L., Ivoulsou, A., Bensaid, F., Liu, C, Liu, J., Tordjman, J., Clement, K., Lee, C, Hotamisligil, G., Libby, P., and Shi, G., Leptin deficiency shifts mast cells toward anti-inflammatory actions and protects mice from obesity and diabetes by polarizing M2 macrophages, Cell Metab., 2015, vol. 22, no. 6, pp. 1045–1058.

  9. 9

    Altintas M., Azad A., Nayer B., Contreras, G., Zaias, J., Faul, C., Reiser, J., and Nayer, A., Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice, Lipid Res., 2011, vol. 52, pp. 480–488.

  10. 10

    Toniato, E., Frydas, I., Robuffo, I., Ronconi, G., Caraffa, A.L., Kritas, S., and Conti, P., Activation and inhibition of adaptive immune response mediated by mast cells, Biol. Reg. Horn.Agents, 2017, vol. 31, no. 3, pp. 543–548.

  11. 11

    Daryabor, G., Kabelitz, D., and Kalantar, K., An update on immune dysregulation in obesity-related insulin resistance, Scand. J. Immun., 2019, vol. 89, no. 4, pp. e12747–e12763.

  12. 12

    Tordjman, S., Chokron, S., Delorme, R., Charrier, A., Bellissant, E., Jaafari, N., and Fougerou, C., Melato-nin: pharmacology, functions and therapeutic benefits, Curr. Neuropharm., 2017, vol. 15, no. 3, pp. 434–443.

  13. 13

    Hardeland, R., Cardinali, D.P., Srinivasan, V., Spence, D.W., Brown, G.M., and Pandi-Perumal, S.R., Melatonin—aA pleiotropic, orchestrating regulator molecule, Progr. Neurobiol., 2011, vol. 93, no. 3, pp. 350–384.

  14. 14

    Amaral, F.G.D. and Cipolla-Neto, J., A brief review about melatonin, a pineal hormone, Arch. Endocrinol. Metab., 2018, vol. 62, no. 4, pp. 472–479.

  15. 15

    Reina, M. and Martínez, A., A new free radical scavenging cascade involving melatonin and three of its metabolites (ЗOHM, AFMK and AMK), Comp. Theor. Chem., 2018, vol. 1123, pp. 111–118.

  16. 16

    Cardinali, D.P., Hardeland, R., Inflammaging, metabolic syndrome and melatonin: a call for treatment studies, Neuroendocrinology, 2017, vol. 104, no. 4, pp. 382–397.

  17. 17

    Calvo, J.R., Gonzalez-Yanes, C., and Maldonado, M.D., The role of melatonin in the cells of the innate immunity: a review, Pineal Res., 2013, vol. 55, no. 2, pp. 103–120.

  18. 18

    Laitinen, J.T., Castren, E., Vakkuri, O., and Saavedra, J.M., Diurnal rhythm of melatonin binding in the rat suprachiasmatic nucleus, Endocrinology, 1989, vol. 124, no. 3, pp. 1585–1587.

  19. 19

    Acufia-Castroviejo, D., Reiter, R. J., Menendez-Pelaez, A., Pablos, M. I. and Burgos, A. Characterization of high-affinity melatonin binding sites in purified cell nuclei of rat liver, Pineal Res., 1994, vol. 16, no. 2, pp. 100–112.

  20. 20

    Gerdin, M.J., Masana, M.I., Rivera-Bermüdez, M.A., Hudson, R.L., Earnest, D.J., Gillette, M.U., and Dubocovich, M.L., Melatonin desensitizes endogenous MT2 melatonin receptors in the rat suprachiasmatic nucleus: relevance for defining the periods of sensitivity of the mammalian circadian clock to melatonin, FASEB J., 2004, vol. 18, no. 14, pp. 1646–1656.

  21. 21

    Dallmann, R., Brown, S.A., and Gachon, F., Chronopharmacology: new insights and therapeutic implications, Ann. Rev. Pharmacol. Toxicol., 2014, vol. 54, pp. 339–361.

  22. 22

    McKenna, H., van der Horst, G.T., Reiss, I., and Martin, D., Clinical chronobiology: a timely consideration in critical care medicine, Crit. Care, 2018, vol. 22, no. 124, pp. 1–10.

  23. 23

    Dyar, K.A. and Eckel-Mahan, K.L., Circadian metabolomics in time and space, Front. Neurosci., 2017, vol. 11, no. 369, pp. 1–10.

  24. 24

    Shen, X.H., Tang, Q.Y., Huang, J., and Cai, W., Vitamin E regulates adipocytokine expression in a rat model of dietary-induced obesity, Exp. Biol. Med., 2010, vol. 235, no. 1, pp. 47–51.

  25. 25

    Halenova, T., Raksha, N., Vovk, T., Savchuk, O., Ostapchenko, L., Prylutskyy, Y., Kyzyma, O., Ritter, U., and Scharff, P., Effect of C60 fullerene nanoparticles on the diet-induced obesity in rats, Int. J. Obesity, 2018, vol. 42, pp.1987–1998.

  26. 26

    Kalmukova, O., Pustovalov, A., Vareniuk, I., and Dzerzhynsky, M., Effect of melatonin different time administration on the development of diet-induced obesity in rats, Bull. Taras Shevchenko Nat. Univ. Kyiv—Probl.Physiol. Func. Regul., 2018, vol. 23, no. 2, pp. 20–27.

  27. 27

    Suvarna, K., Layton, C., Bancroft, J.D., editors. Bancroft’s theory and practice of histological techniques. 7th ed. Churchill Livingstone Elsevier; 2013. 654 p.

  28. 28

    Mishra, N.S., Wanjari, S.P., Parwani, R.N., Wanjari, P.V., and Kaothalker, S.P., Assessment of collagen and elastic fibres in various stages of oral sub-mucous fibrosis using Masson’s trichrome, Verhoeff vangieson and picrosirius staining under light and polarizing microscopy, J. Dent. Spec., 2015, vol. 3, no. 2, pp. 170–5.

  29. 29

    Spencer, M., Unal, R., Zhu, B., Rasouli, N., McGehee, R.E., Jr., Peterson, C.A., and Kern, P.A., Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance, J. Clin. Endocrinol. Metab., 2011, vol. 96, no. 12, pp. E1990–E1998.

  30. 30

    Altintas, M.M., Azad, A., Nayer, B., Contreras, G., Zaias, J., Faul, C., Reiser, J., and Nayer, A., Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice, J. Lipid Res., 2011, vol. 52, no. 3, pp. 480–488.

  31. 31

    Crowther, J.R., The ELISA Guidebook, Totowa, New Jersey: Humana Press Inc., 2001.

  32. 32

    Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254.

  33. 33

    Martinez-Santibacez, G., Nien-Kai Lumeng, C., Macrophages and the regulation of adipose tissue remodeling, Ann. Rev. Nutr., 2014, vol. 34, pp. 57–76.

  34. 34

    Wu, J., Boström, P., Sparks, L.M., Ye, L., Choi, J.H., Giang, A.H., Khandekar, M., Virtanen, K., Nuutila, P., Schaart, G., Huang, K., Tu, H., Lichtenbelt, W., Hoeks, J., Enerback, S., Schrauwen, P., and Spiegelman, B., Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human, Cell, 2012, vol. 150, no. 2, pp. 366–376.

  35. 35

    Harms, M., Seale, P., Brown and beige fat: development, function and therapeutic potential, Nat. Med., 2013, vol. 19, no. 10, pp. 1252–1263.

  36. 36

    Jin, J.X., Lee, S., Taweechaipaisankul, A., Kim, G.A., and Lee, B.C., Melatonin regulates lipid metabolism in porcine oocytes, J. Pineal Res., 2017, vol. 62, no. 2. e12388.

  37. 37

    Choe, S.S., Huh, J.Y., Hwang, I.J., Kim, J.I., and Kim, J.B., Adipose tissue remodeling: its role in energy metabolism and metabolic disorders, Front. Endocrinol., 2016, vol. 7, no. 30, pp. 1–16.

  38. 38

    Sadashiv, S.T., Paul, B.N., Kumar, S., Chandra, A., Dhananjai, S., and Negi, M.P., Over expression of resistin in adipose tissue of the obese induces insulin resistance, World J. Diabetes, 2012, vol. 3, no. 7, pp. 135–141.

  39. 39

    Jialal, I., Adams-Huet, B., and Devaraj, S., Factors that promote macrophage homing to adipose tissue in metabolic syndrome, J. Diabetes Complicat., 2016, vol. 30, no. 8, pp. 1434–1436.

  40. 40

    Sun, K., Tordjman, J., Cliiment, K., and Scherer, P.E., Fibrosis and adipose tissue dysfunction, Cell Metab., 2013, vol. 18, no. 4, pp. 470–477.

  41. 41

    Herro, R., Croft, M., The control of tissue fibrosis by the inflammatory molecule LIGHT (TNF Super-family member 14), Pharmacol. Res., 2016, vol. 104, pp. 151–155.

  42. 42

    Halenova, T., Roslova, N., Vareniuk, I., Dzerzhyn-sky, M., Savchuk, O., Ostapchenko, L., Prylutskyy, Y., Ritter, U., and Scharff, P., Hepatoprotective effect of orally applied water-soluble pristine C60 fullerene against CCL-induced acute liver injury in rats, RSC Adv., 2016, vol. 6, no. 102, pp. 100046–100055.

  43. 43

    Liu, J., Clough, S.J., Hutchinson, A J., Adamah-Biassi, E.B., Popovska-Gorevski, M. and Dubocovich, M.L., MT1 and MT2 melatonin receptors: a therapeutic perspective, Ann. Rev. Pharmacol. Toxicol., 2016, vol. 56, pp. 361–383.

  44. 44

    Cano Barquilla, P., Pagano, E.S., Jiménez-Ortega, V., Fernández-Mateos, P., Esquifmo, A.I., and Cardinali, D.P., Melatonin normalizes clinical and biochemical parameters of mild inflammation in diet-induced metabolic syndrome in rats, J. Pineal Res., 2014, vol. 57, no. 3, pp. 280–290.

  45. 45

    Alamdari, N.M., Mahdavi, R., Roshanravan, N., Yaghin, N.L., Ostadrahimi, A.R, and Faramarzi, E., A double-blind, placebo-controlled trial related to the effects of melatonin on oxidative stress and inflammatory parameters of obese women, Horm. Metab. Res., 2015, vol. 47, no. 7, pp. 504–508.

  46. 46

    Agil, A., Reiter, R.J., Jiménez-Aranda, A., Ibán-Arias, R., Navarro-Alarcyn, M., Marchal, J.A., Adem, A., and Fernández-Vázquez, G., Melatonin ameliorates low-grade inflammation and oxidative stress in young Zucker diabetic fatty rats, J. Pineal Res., 2013, vol. 54, no. 4, pp. 381–388.

  47. 47

    Favero, G., Stacchiotti, A., Castrezzati, S., Bonomini, F., Albanese, M., Rezzani, R., and Rodella, L.F., Melatonin reduces obesity and restores adipokine patterns and metabolism in obese (ob/ob) mice, Nutr. Res., 2015, vol. 35, no. 10, pp. 891–900.

  48. 48

    Tamtaji, O.R., Mobini, M., Reiter, R.J., Azami, A., Gholami, M.S., and Asemi, Z., Melatonin, a toll-like receptor inhibitor: current status and future perspectives, J. Cell. Physiol., 2019, vol. 234, no. 6, pp. 7788–7795.

  49. 49

    Askenase, P.W., Itakura, A., Leite-de-Moraes, M.C., Lisbonne, M., Roongapinun, S., Goldstein, D.R., and Szczepanik, M., TLR-dependent IL-4 production by invariant Vα+14+ Jαl8+ NKT cells to initiate contact sensitivity in vivo, J. Immunol., 2005, vol. 175, no. 10, pp. 6390–6401.

  50. 50

    Hardeland, R., Opposite effects of melatonin in different systems and under different conditions, Curr. Top. Biochem. Res., 2016, vol. 17, pp. 57–69.

  51. 51

    Carrillo-Vico, A., Lardone, P., Álvarez-Sánchez, N., Rodríguez-Rodríguez, A., and Guerrero, J., Melatonin: buffering the immune system, Int. J. Mol. Sci., 2013, vol. 14, no. 4, pp. 8638–8683.

  52. 52

    Hardeland, R., Melatonin and inflammation—story of a double-edged blade, J. Pineal Res., 2018, vol. 65, no. 4, e12525.

Download references


This study was not supported by any specific grant from financial organizations in the state, commercial, or noncommercial sector.

Author information

Correspondence to O. O. Kalmukova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All animal experiments were performed in compliance with the international principles of the European Convention on the use of vertebrate animals in experimental and other research applications (European convention, Strasburg, 1986), Article 26 of the Ukrainian law “On the protection of animals from cruel treatment” (no. 3447-IV, from February 21, 2006), and all norms of bioethics, biosafety, and the general ethical principles of animal experiments approved by the First National Bioethics Congress in Ukraine (September 2001).

Additional information

Translated by S. Semenova

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalmukova, O.O., Yurchenko, A.V., Savchuk, A.M. et al. Changes in the Inflammatory Status in White Adipose Tissue of Rats with Diet-Induced Obesity at Different Regimens of Melatonin Administration. Cytol. Genet. 54, 38–47 (2020). https://doi.org/10.3103/S0095452720010077

Download citation


  • high-calorie diet-induced obesity
  • inflammation
  • chronobiology
  • melatonin
  • cytokine
  • fibrosis
  • mast cells
  • adipocytes