Advertisement

Cytology and Genetics

, Volume 53, Issue 3, pp 239–249 | Cite as

Genetic Modification of Saccharum officinarum for Herbicide Tolerance

  • Muhammad Fahad Khan
  • Qurban AliEmail author
  • Muhammad Tariq
  • Shafique Ahmed
  • Zahida Qamar
  • Idrees Ahmad Nasir
Article
  • 13 Downloads

Abstract

Sugarcane is one of the most important worldwide cultivated agro-industrial crops that belong to the family Poaeceae and genus Saccharum. Prescribed study was conducted in Seed Biotechnology Lab, Center of Excellence in Molecular Biology, University of the Punjab, Lahore-Pakistan. The purpose of this study was to alter the genome of sugarcane line CPF246 with herbicide resistance gene GTGene driven by the sugar cane ubiquitin promoter and confirmation through PCR and Dot blot as well as protein expression analysis through ELISA. Results have shown the successful transformation and expression of transgenes against glyphosate resistance. This could prove a mile stone towards putting research efforts in the improvement of Saccharum officinarum for certain traits. Outcomes of this research will be beneficial in minimizing the management cost which people do bear for weed management practices. Success of this study opens new horizons to further improve other characteristics of sugarcane using genetic modification as was done in current study.

Keywords:

Saccharum officinarum genetic modification herbicide GTGene Glyphosate 

REFERENCES

  1. 1.
    Bakker, H., Sugar Cane Cultivation and Management, Springer Science and Business Media, 2012.Google Scholar
  2. 2.
    D’Hont, A., Ison, D., Alix, K., Roux, C., and Glaszmann, J.C., Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes, Genome, 1998, vol. 41, no. 2, pp. 221–225.CrossRefGoogle Scholar
  3. 3.
    Joyce, P., Kuwahata, M., Turner, N., and Lakshmanan, P., Selection system and co-cultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane, Plant Cell Rep., 2010, vol. 29, no. 2, pp. 173–183.CrossRefGoogle Scholar
  4. 4.
    Enríquez-Obregó, G.A., Vázquez-Padrón, R.I., Prieto-Samsonov, D.L., Gustavo, A., and Selman-Housein, G., Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation, Planta, 1998, vol. 206, no. 1, pp. 20–27.CrossRefGoogle Scholar
  5. 5.
    Nasir, I.A., Tabassum, B., Qamar, Z., Javed, M.A., Tariq, M., Farooq, A.M., Butt, S.J., Qayyum, A., and Husnain, T., Herbicide-tolerant sugarcane (Saccharum officinarum L.) plants: an unconventional method of weed removal, Turkish J. Biol., 2014, vol. 38, no. 4, pp. 439–449.CrossRefGoogle Scholar
  6. 6.
    Qureshi, M.A. and Afghan, S., Sugarcane Cultivation in Pakistan, Sugar Book Pub Pakistan Society of Sugar Technologist, 2005.Google Scholar
  7. 7.
    Srikanth, J., Subramonian, N., and Premachandran, M., Advances in transgenic research for insect resistance in sugarcane, Trop. Plant Biol., 2011, vol. 4, no. 1, pp. 52–61.CrossRefGoogle Scholar
  8. 8.
    Gul, F., Naeem, M., and Shah, R.A., Role of gurdaspur borer (Bissetia steniellus Hampson) in sugarcane ratoon crop failure and its integrated control at Mardan, Sarhad J. Agricult., 2010, vol. 26, no. 3, pp. 387–391.Google Scholar
  9. 9.
    Khaliq, A., Ashfaq, M., Akram, W., Choi, J.K., and Lee, J.J., Effect of plant factors, sugar contents, and control methods on the top borer (Scirpophaga nivella F.) infestation in selected varieties of sugarcane, Entomol. Res., 2005, vol. 35, no. 3, pp. 153–160.CrossRefGoogle Scholar
  10. 10.
    Nazir, A., Jariko, G.A., and Junejo, M.A., Factors affecting sugarcane production in Pakistan, Pakistan J. Com. Soc. Sci., 2013, vol. 7, no. 1, pp. 128–140.Google Scholar
  11. 11.
    Zafar, M., Tanveer, A., Cheema, Z.A., and Ashraf, M., Weed-crop competition effects on growth and yield of sugarcane planted using two methods, Pakistan J. Bot., 2010, vol. 42, no. 2, pp. 815–823.Google Scholar
  12. 12.
    McMahon, G., Lawrence, P., and O’Grady, T., Weed control in sugarcane, in Manual of Cane Growing Bureau of Sugar Experiment Stations, Indooroopilly, 2000, pp. 241–261.Google Scholar
  13. 13.
    Green, J.M., The benefits of herbicide-resistant crops, Pest Manage. Sci., 2012, vol. 68, no. 10, pp. 1323–1331.CrossRefGoogle Scholar
  14. 14.
    Dill, G.M., Glyphosate-resistant crops: history, status and future, Pest Manage. Sci., 2005, vol. 61, no. 3, pp. 219–224.CrossRefGoogle Scholar
  15. 15.
    Deng, L., Weng, L., and Xiao, G., Optimization of Epsps gene and development of double herbicide tolerant transgenic PGMS rice, J. Agricul. Sci. Technol., 2014, vol. 16, no. 1, pp. 217–228.Google Scholar
  16. 16.
    Keller, G., Spatola, L., Mccabe, D., Martinell, B., Swain, W., and John, M.E., Transgenic cotton resistant to herbicide bialaphos, Transgenic Res., 1997, vol. 6, no. 6, pp. 385–392.CrossRefGoogle Scholar
  17. 17.
    Rashid, B., Saleem, Z., Husnain, T., and Riazuddin, S., Transformation and inheritance of Bt genes in Gossypium hirsutum, J. Plant Biol., 2008, vol. 51, no. 4, pp. 248–254.CrossRefGoogle Scholar
  18. 18.
    Schmid, J. and Amrhein, N., Molecular organization of the shikimate pathway in higher plants, Phytochemistry, 1995, vol. 39, no. 4, pp. 737–749.CrossRefGoogle Scholar
  19. 19.
    Kumar, S., Sharma, P., and Pental, D., A genetic approach to in vitro regeneration of non-regenerating cotton (Gossypium hirsutum L.) cultivars, Plant Cell Rep., 1998, vol. 18, nos. 1–2, pp. 59–63.CrossRefGoogle Scholar
  20. 20.
    Arencibia, A.D., Carmona, E.R., Tellez, P., Chan, M.-T., Yu, S.-M., Trujillo, L.E., and Oramas, P., An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens, Transgenic Res., 1998, vol. 7, no. 3, pp. 213–222.CrossRefGoogle Scholar
  21. 21.
    Birch, R., Transgenic Sugarcane: Opportunities and Limitations, 1997.Google Scholar
  22. 22.
    Taylor, P.W. and Dukic, S., Development of an in vitro culture technique for conservation of Saccharum spp. hybrid germplasm, Plant Cell, Tiss. Organ Culture, 1993, vol. 34, no. 2, pp. 217–222.CrossRefGoogle Scholar
  23. 23.
    Gallo-Meaghe, M. and Irvine, J.E., Effects of tissue type and promoter strength on transient GUS expression in sugarcane following particle bombardment, Plant Cell Rep., 1993, vol. 12, no. 12, pp. 666–70.Google Scholar
  24. 24.
    Falco, M., Neto, A.T., and Ulian, E., Transformation and expression of a gene for herbicide resistance in a Brazilian sugarcane, Plant Cell Rep., 2000, vol. 19, no. 12, pp. 1188–1194.CrossRefGoogle Scholar
  25. 25.
    Franks, T. and Birch, R., Gene transfer into intact sugarcane cells using microprojectile bombardment, Func. Plant Biol., 1991, vol. 18, no. 5, pp. 471–480.CrossRefGoogle Scholar
  26. 26.
    Bower, R. and Birch, R.G., Transgenic sugarcane plants via microprojectile bombardment, Plant J., 1992, vol. 2, no. 3, pp. 409–416.CrossRefGoogle Scholar
  27. 27.
    Arencibia, A., Vazquez, R.I., Prieto, D., Tellez, P., Carmona, E.R., Coego, A., Hernandez, L., De la Riva, G.A., and Selman-Housein, G., Transgenic sugarcane plants resistant to stem borer attack, Mol. Breed, 1997, vol. 3, no. 4, pp. 247–255.CrossRefGoogle Scholar
  28. 28.
    Weng, L.X., Deng, H.H., Xu, J.L., Li, Q., Zhang, Y.Q., Jiang, Z.D., Li, Q.W., Chen, J.W., and Zhang, L.H., Transgenic sugarcane plants expressing high levels of modified cry1Ac provide effective control against stem borers in field trials, Trans. Res., 2011, vol. 20, no. 4, pp. 759–772.CrossRefGoogle Scholar
  29. 29.
    Chen, L., Marmey, P., Taylor, N.J., Brizard, J.P., Espinoza, C., D’Cruz, P., Huet, H., Zhang, S., de Kochko, A., Beachy, R.N., and Fauquet, C.M., Expression and inheritance of multiple transgenes in rice plants, Nat. Biotechnol., 1998, vol. 16, no. 11, pp. 1060–1064.CrossRefGoogle Scholar
  30. 30.
    Kaur, A., Gill, M., Gill, R., and Gosal, S., Standardization of different parameters for ‘particle gun’ mediated genetic transformation of sugarcane (Saccharum officinarum L.), Indian J. Biotech., 2007, vol. 6, no. 1, pp. 31–34.Google Scholar
  31. 31.
    Bower, R., Elliott, A.R., Potier, B.A., and Birch, R.G., High-efficiency, microprojectile-mediated cotransformation of sugarcane, using visible or selectable markers, Mol. Breed., 1996, vol. 2, no. 3, pp. 239–249.CrossRefGoogle Scholar
  32. 32.
    Christensen, A.H. and Quail, P.H., Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants, Trans. Res., 1996, vol. 5, no. 3, pp. 213–218.CrossRefGoogle Scholar
  33. 33.
    McElroy, D. and Brettell, R.I., Foreign gene expression in transgenic cereals, Trends Biotechnol., 1994, vol. 12, no. 2, pp. 62–68.CrossRefGoogle Scholar
  34. 34.
    Joung, Y.H. and Kamo, K., Expression of a polyubiquitin promoter isolated from Gladiolus, Plant Cell Rep., 2006, vol. 25, no. 10, pp. 1081–1088.CrossRefGoogle Scholar
  35. 35.
    Zambryski, P., Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells Annu. Rev. Genet., 1988, vol. 22, no. 1, pp. 1–30.CrossRefGoogle Scholar
  36. 36.
    Kohli, A., Leech, M., Vain, P., Laurie, D.A., and Christou, P., Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc. Natl. Acad. Sci. U. S. A., 1998, vol. 95, no. 12, pp. 7203–7208.CrossRefGoogle Scholar
  37. 37.
    Guo, F.-Q., Wang, R., Chen, M., and Crawford, N.M., The Arabidopsis dual-affinity nitrate transporter gene AtNRT1. 1 (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth, Plant Cell, 2001, vol. 13, no. 8, pp. 1761–1777.CrossRefGoogle Scholar
  38. 38.
    Kumar, R. and Sinha, R., Colloidal gold based dipstick strip for detection of genetically modified crops and produce.Google Scholar
  39. 39.
    Halder, S. and Venu, P., Bt Cry toxin expression profile in selected Pakistani cotton genotypes, Curr. Sci., 2012, vol. 102, no. 12, p. 1632.Google Scholar
  40. 40.
    Boopal, K., Hanur, V.S., Arya, V.V., and Reddy, P., Phenotypic assessment of Bt Cry2A transgenic tomato resistant to neonate larva of Helicoverpa armigera, Curr. Trends Biotechnol. Pharm., 2014, vol. 8, no. 2, pp. 124–129.Google Scholar
  41. 41.
    Bakhsh, A., Rao, A.Q., Shahid, A.A., and Husnain, T., Spatio temporal expression pattern of an insecticidal gene (cry2A) in transgenic cotton lines, Not. Sci. Biol., 2012, vol. 4, no. 4, p. 115.CrossRefGoogle Scholar
  42. 42.
    Kiani, S., Mohamed, B.B., Shehzad, K., Jamal, A., Shahid, M.N., Shahid, A.A., and Husnain, T., Chloroplast-targeted expression of recombinant crystal-protein gene in cotton: an unconventional combat with resistant pests, J. Biotechnol., 2013, vol. 166, no. 3, pp. 88–96.CrossRefGoogle Scholar
  43. 43.
    Bashir, K., Husnain, T., Fatima, T., Riaz, N., Makhdoom, R., and Riazuddin, S., Novel indica basmati line (B-370) expressing two unrelated genes of Bacillus thuringiensis is highly resistant to two lepidopteran insects in the field, Crop Prot., 2005, vol. 24, no. 10, pp. 870–879.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • Muhammad Fahad Khan
    • 1
  • Qurban Ali
    • 1
    • 2
    Email author
  • Muhammad Tariq
    • 1
  • Shafique Ahmed
    • 1
  • Zahida Qamar
    • 1
  • Idrees Ahmad Nasir
    • 1
  1. 1.Centre of Excellence in Molecular Biology, University of the Punjab LahoreLahorePakistan
  2. 2.Institute of Molecular Biology and Biotechnology, University of LahoreLahorePakistan

Personalised recommendations