Advertisement

Cytology and Genetics

, Volume 53, Issue 3, pp 185–191 | Cite as

The Potential Role of SnRK1 Protein Kinases in the Regulation of Cell Division in Arabidopsis thaliana

  • O. E. KrasnoperovaEmail author
  • D. D. BuyEmail author
  • I. I. GoriunovaEmail author
  • S. V. IsayenkovEmail author
  • P. A. KarpovEmail author
  • Ya. B. BlumeEmail author
  • A. I. YemetsEmail author
Article
  • 14 Downloads

Abstract

It is known that the sucrose nonfermenting-1 (SNF1)-related protein kinase (SnRK1) subfamily participates in the regulation of carbohydrate metabolism and energy balance. These enzymes are multifunctional and can participate in many other important cellular processes. The role of the SnRK1 protein kinases (KIN10 and KIN11) in the regulation of cell division in Arabidopsis thaliana has been studied in this work. The KIN10 and KIN11 gene knockout lines of A. thaliana were used for this purpose (http://arabidopsis.info/). A low mitotic index was recorded in cells of these mutant lines and a decreased expression level was shown in the cell proliferation markers—the CYCB1;1 gene (B1 type cyclin) and the plant homolog BRCA1 (Breast Cancer Suppressor Protein). The significantly lower mitotic index and expression level of CYCB1;1 and BRCA1 were observed in the mutants grown in the conditions of energy deficiency. The higher expression of CYCB1;1/BRCA1 and KIN10/KIN11 genes was also recorded in the suspension culture of A. thaliana compared with intact sprouts. These data may confirm a possible role of the KIN10/KIN11 protein kinases in the regulation of cell proliferative activity.

Keywords:

protein kinases Arabidopsis thaliana SnRK1 KIN10 KIN11 gene expression markers of mitosis cell division 

Notes

REFERENCES

  1. 1.
    Wang, L., Hu, W., Sun, J., Liang, X., Yang, X., We, S., Wang, X., Zhou, Y., Xiao, Q., Yang, G., and He, G., Genome-wide analysis of SnRK gene family in Brachypodium distachyon and functional characterization of BdSnRK2.9, Plant Sci., 2015, vol. 237, pp. 35–45.  https://doi.org/10.1016/j.plantsci.2015.05.008 CrossRefGoogle Scholar
  2. 2.
    Wang, Y., Berkowitz, O., Selinski, J., Xu, Y., Hartmann, A., and Whelan, J., Stress responsive mitochondrial proteins in Arabidopsis thaliana, Free Radic. Biol. Med., 2018, vol. 122, pp. 28–39.  https://doi.org/10.1016/j.freeradbiomed.2018.03.031 CrossRefGoogle Scholar
  3. 3.
    Wang, X., Wang, L., Wang, Y., Liu, H., Hu, D., Zhang, N., Zhang, S., Cao, H., Cao, Q., Zhang, Z., Tang, S., Song, D., and Wang, C., Arabidopsis PCaP2 plays an important role in chilling tolerance and ABA response by activating CBF- and SnRK2-mediated transcriptional regulatory network, Front. Plant Sci., 2018, vol. 9, no. 215.  https://doi.org/10.3389/fpls.2018.00215
  4. 4.
    Halford, N.G. and Hey, S.J., Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants, Biochem. J., 2009, vol. 419, no. 2, pp. 247–259.  https://doi.org/10.1042/BJ20082408 CrossRefGoogle Scholar
  5. 5.
    Polge, C. and Thomas, M., SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control?, Trends Plant Sci., 2007, vol. 21, no. 1, pp. 20–28.  https://doi.org/10.1016/j.tplants.2006.11.005 CrossRefGoogle Scholar
  6. 6.
    Lumbreras, V., Alba, M.M., Kleinow, T., Koncz, C., and Pages, M., Domain fusion between SNF1-related kinase subunits during plant evolution, EMBO Rep., 2001, vol. 2, no. 1, pp. 55–60.  https://doi.org/10.1093/emboreports/kve001 CrossRefGoogle Scholar
  7. 7.
    Karpov, P.A., Rayevsky, A.V., Krasnoperova, E.E., Isayenkov, S.V., Yemets, A.I., and Blume, Ya.B., Protein kinase KIN10 from Arabidopsis thaliana as a potential regulator of primary microtubule nucleation centers in plants, Cytol. Genet., 2017, vol. 51, no. 6, pp. 415–421. https://doi.org/10.3103/S0095452717060056 CrossRefGoogle Scholar
  8. 8.
    Tsai, A.Y.L. and Gazzarrini, S., Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture, Front. Plant Sci., 2014.  https://doi.org/10.3389/fpls.2014.00119
  9. 9.
    Zhai, Z., Liu, H., and Shanklin, J., Phosphorylation of WRINKLED1 by KIN10 results in its proteasomal degradation, providing a link between energy homeostasis and lipid biosynthesis, Plant Cell, 2017, vol. 29, no. 4, pp. 871–889.  https://doi.org/10.1105/tpc.17.00019 CrossRefGoogle Scholar
  10. 10.
    Shen, W., Reyes, M.I., and Hanley-Bowdoin, L., Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop, Plant Physiol., 2009, vol. 150, no. 2, pp. 996–1005.  https://doi.org/10.1104/pp.108.132787 CrossRefGoogle Scholar
  11. 11.
    Mohannath, G., Jackel, J.N., Lee, Y.H., Buchmann, R.C., Wang, H., Patil, V., Adams, A.K., and Bisaro, D.M., A complex containing SNF1-related kinase (SnRK1) and adenosine kinase in Arabidopsis, PLoS One, 2014, vol. 149, no. 4, e87592.  https://doi.org/10.1371/journal.pone.0087592 CrossRefGoogle Scholar
  12. 12.
    Wang, F., Ye, Y., Chen, X., Wang, J., Chen, Z., and Zhou, Q., A sucrose non-fermenting-1-related protein kinase 1 gene from potato, StSnRK1, regulates carbohydrate metabolism in transgenic tobacco, Physiol. Mol. Biol. Plants, 2017, vol. 23, no. 4, pp. 933–943.  https://doi.org/10.1007/s12298-017-0473-4 CrossRefGoogle Scholar
  13. 13.
    Simon, N.M., Kusakina, J., Fernández-López, A., Chembath, A., Belbin, F.E., and Dodd, A.N., The energy-signalling hub SnRK1 is important for sucrose-induced hypocotyl elongation, Plant Physiol., 2018, vol. 176, pp. 1299–1310.  https://doi.org/10.1104/pp.17.01395 CrossRefGoogle Scholar
  14. 14.
    Mair, A., Pedrotti, L., Wurzinger, B., Anrather, D., Simeunovic, A., Weiste, C., Valerio, C., Dietrich, K., Kirchler, T., Nagele, T., Carbajosa, J.V., Hanson, J., Baena-González, E., Chaban, C., Weckwerth, W., Dröge-Laser, W., and Teige, M., SnRK1-triggered switch of bZIP63 dimerization mediates the low energy response in plants, Elife, 2015.  https://doi.org/10.7554/eLife.05828
  15. 15.
    Chen, L., Su, Z., Huang, L., Xia, F., Qi, H., Xie, L., Xiao, S., and Chen, Q.-F., The AMP-activated protein kinase KIN10 is involved in the regulation of autophagy in Arabidopsis, Front. Plant Sci., 2017, vol. 8.  https://doi.org/10.3389/fpls.2017.01201
  16. 16.
    Nunes, C., O’Hara, L.E., Primavesi, L.F., Delatte, T.L., Schluepmann, H., Somsen, G.W., Silva, A.B., Fevereiro, P.S., Wingler, A., and Paul, M.J., The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation, Plant Physiol., 2013, vol. 162, no. 3, pp. 1720–1732.  https://doi.org/10.1104/pp.113.220657 CrossRefGoogle Scholar
  17. 17.
    Martínez-Barajas, E., Delatte, T., Schluepmann, H., de Jong, G.J., Somsen, G.W., Nunes, C., Primavesi, L.F., Coello, P., Mitchell, R.A.C., and Paul, M.J., Wheat grain development is characterized by remarkable trehalose 6-phosphate accumulation pregrain filling: tissue distribution and relationship to SNF1-related protein kinase1 activity, Plant Physiol., 2011, vol. 156, no. 1, pp. 373–381.  https://doi.org/10.1104/pp.111.174524 CrossRefGoogle Scholar
  18. 18.
    Jeong, E.-Y., Seo, P.J., Woo, J.C., and Park, C.-M., AKIN10 delays flowering by inactivating IDD8 transcription factor through protein phosphorylation in Arabidopsis, BMC Plant Biol., 2015, vol. 15, no. 110.  https://doi.org/10.1186/s12870-015-0503-8
  19. 19.
    Im, J.H., Cho, Y.H., Kim, G.D., Kang, G.H., Hong, J.W., and Yoo, S.D., Inverse modulation of the energy sensor Snf1-related protein kinase 1 on hypoxia adaptation and salt stress tolerance in Arabidopsis thaliana, Plant Cell Environ., 2014, vol. 10, pp. 2303–2312.  https://doi.org/10.1111/pce.12375 Google Scholar
  20. 20.
    Krasnoperova, E.E., Isayenkov, S.V., Karpov, P.A., and Yemets, A.I., The cladistic analysis and characteristic of an expression of serine/threonine protein kinase KIN10 in different organs of Arabidopsis thaliana, Rep. Natl. Acad. Sci. Ukraine, 2016, no. 1, pp. 81–91. . https://doi.org/10.15407/dopovidi2016.01.081
  21. 21.
    Yemets, A.I., Lloyd, C., and Blume, Ya.B., Plant tubulin phosphorylation and its role in cell cycle progression, in The Plant Cytoskeleton: A Key Tool for Agro-Biotechnology, Netherlands: Springer, 2008, pp. 145–159.  https://doi.org/10.1007/978-1-4020-8843-8 Google Scholar
  22. 22.
    Crisanto, G., The Arabidopsis cell division cycle, Arabidopsis Book, 2009. no. 7, e0120.  https://doi.org/10.1199/tab.0120
  23. 23.
    Trapp, O., Seeliger, K., and Puchta, H., Homologs of breast cancer genes in plants, Front Plant Sci., 2011, vol. 2, no. 19.  https://doi.org/10.3389/fpls.2011.00019
  24. 24.
    Menges, M. and Murray, J.A., Murray synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity, Plant J., 2002, vol. 30, no. 2, pp. 203–212.  https://doi.org/10.1046/j.1365-313X.2002.01274.x CrossRefGoogle Scholar
  25. 25.
    Guzzo, F., Portaluppi, P., Grisi, R., Barone, S., Zampieri, S., Franssen, H., and Levi, M., Reduction of cell size induced by enod40 in Arabidopsis thaliana, J. Exp Bot., 2005, vol. 56, no. 412, pp. 507–513.  https://doi.org/10.1093/jxb/eri028 CrossRefGoogle Scholar
  26. 26.
    Gamborg, O.L. and Eveleigh, D.E., Culture methods and detection of glucanases in cultures of wheat and barley, Can. J. Biochem., 1968, vol. 46, no. 5, pp. 417–421.CrossRefGoogle Scholar
  27. 27.
    Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔC T method, Methods, 2001, vol. 25, no. 4, pp. 402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  28. 28.
    Shevchenko, G.V., Talaliev, A.S., and Doonan, J., Arabidopsis thaliana seedlings from the Chernobyl NPP zone are tolerant to DNA-damaging agents, Rep. Natl. Acad. Sci. Ukraine, 2012, no. 12, pp. 157–162. https://doi.org/10.15407/dopovidi2017.04.084
  29. 29.
    Starita, L.M., Machida, Y., Sankaran, S., Elias, J.E., Griffin, K., Schlegel, B.P., Gygi, S.P., and Parvin, J.D., BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number, Mol. Cell. Biol., 2004, vol. 24, no. 19, pp. 8457–8466.  https://doi.org/10.1128/MCB.24.19.8457-8466.2004 CrossRefGoogle Scholar
  30. 30.
    Baena-González, E. and Sheen, J., Convergent energy and stress signaling, Trends Plant Sci., 2008, vol. 13, no. 9, pp. 474–482.  https://doi.org/10.1016/j.tplants.2008.06.006 CrossRefGoogle Scholar
  31. 31.
    Sample, V., Ramamurthy, S., Gorshkov, K., Ronnett, G.V., and Zhang, J., Polarized activities of AMPK and BRSK in primary hippocampal neurons, Mol. Biol. Cell, 2015, vol. 26, no. 10, pp. 1935–1946.  https://doi.org/10.1091/mbc.E14-02-0764 CrossRefGoogle Scholar
  32. 32.
    Alvarado-Kristensson, M., Rodríguez, M.J., Silio, V., Valpuesta, J.M., and Carrera, A.C., SADB phosphorylation of γ-tubulin regulates centrosome duplication, Nat. Cell Biol., 2009, vol. 11, no. 9, pp. 1081–1092.  https://doi.org/10.1038/ncb1921 CrossRefGoogle Scholar
  33. 33.
    Dhumale, P., Menon, S., Chiang, J., and Püschel, A.W., The loss of the kinases SadA and SadB results in early neuronal apoptosis and a reduced number of progenitors, PLoS One, 2018, vol. 13, no. 4, e0196698.  https://doi.org/10.1371/journal.pone.0196698 CrossRefGoogle Scholar
  34. 34.
    Eklund, G., Lang, S., Glindre, J., Ehlén, E., and Alvarado-Kristensson, M., The nuclear localization of γ‑tubulin is regulated by SadB-mediated phosphorylation, J. Biol. Chem., 2014, vol. 289, no. 31, pp. 21360–21373.  https://doi.org/10.1074/jbc.M114.562389 CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Food Biotechnology and Genomics, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations