Advertisement

Cytology and Genetics

, Volume 52, Issue 6, pp 461–466 | Cite as

Frequency of Spontaneous and Radiation-Induced Chromosomal Aberrations in Peripheral Blood Lymphocytes of Individuals of Different Ages

  • O. V. ShemetunEmail author
  • O. A. TalanEmail author
  • O. M. DemchenkoEmail author
  • D. A. KurinnyiEmail author
  • M. S. PapugaEmail author
  • M. A. PilinskaEmail author
Article
  • 9 Downloads

Abstract

The frequency of spontaneous and X-ray-induced (0.25 Gy) in vitro chromosomal aberrations, as well as the level of chromosomal instability as a result of the bystander effect, in the blood lymphocytes of individuals aged from 12 to 102 years has been investigated using GTG staining of human metaphase chromosomes. The average group frequency of spontaneous chromosomal aberrations in adolescents (12–16 years), middle-aged people (33–52 years), and centenarians (90–102 years) was identical (p > 0.05), whereas it was higher in elderly people (60–70 years) due to increase of chromatid type aberrations rate (p < 0.05). In the irradiated in vitro blood lymphocytes of individuals aged 12–16 years, 33–52 years, and 90–102 years, the levels of chromosomal aberrations was not different (p > 0.05); however, the total frequency of chromosomal aberrations in individuals aged 60–70 years exceeded the value of such indices in other age groups due to the chromosomal type damages (p < 0.05). In nonirradiated blood lymphocytes of adolescents, middle-aged, and elderly individuals cocultivated with lymphocytes irradiated in vitro (0.25 Gy), the induction of the bystander effect was detected. In lymphocytes of centenarians, the development of the bystander effect was not detected.

Keywords:

chromosomal aberrations human age X-ray irradiation in vitro radiation-induced bystander effect 

Notes

REFERENCES

  1. 1.
    Kašuba, V., Rozgaj, R., and Jazbec, A., Chromosome aberration in peripheral blood lymphocytes of Croatian hospital staff occupationally exposed to low levels of ionising radiation, Arh. Hig. Rada Toksikol., 2008, vol. 59, no. 4, pp. 251–259. doi 10.2478/10004-1254-59-2008-1909CrossRefPubMedGoogle Scholar
  2. 2.
    Pilinskaya, M.A., Shemetun, G.M., Shemetun, O.V., Dybskyi, S.S., Dybska, O.B., Talan, O.O., Pedan, L.R., and Kurinnyi, D.A., Chromosomal mutagenesis in human somatic cells: 30-year cytogenetic monitoring after Chornobyl accident, Exp. Oncol., 2016, vol. 38, no. 4, pp. 276–279. Google Scholar
  3. 3.
    Tawn, E.J., Curwen, G.B., Jonas, P., Gillies, M., Hodgsonb, L., and Cadwell, K.K., Chromosome aberations determined by FISH in radiation workers from the Sellafield Nuclear Facility, Radiat. Res., 2015, vol. 184, no. 3, pp. 296–303. doi 10.1667/RR14125.1CrossRefPubMedGoogle Scholar
  4. 4.
    Nugis, V.Yu. and Kozlova, M.G., Cytogenetic examination of persons working in the area of radiation accident at the Fukushima-1 NPP in Japan, Saratov J. Med. Sci. Res., 2014, vol. 10, no. 4, pp. 796–800.Google Scholar
  5. 5.
    Marković, S.Z., Nikolić, L.I., Hamidović, J.Lj., Grubor, M.G., Grubor, M.M., and Kastratović, D.A., Chromosomes aberrations and environmental factors, Hosp. Pharmacol., 2017, vol. 4, no. 1, pp. 486–490. doi 10.5937/hpimj1701486MGoogle Scholar
  6. 6.
    Ryu, T.H., Kim, J.H., and Kim, J.K., Chromosomal aberrations in human peripheral blood lymphocytes after exposure to ionizing radiation, Genome Integr., 2016, vol. 7, no. 5, pp. 1–3. doi 10.4103/2041-9414.197172CrossRefGoogle Scholar
  7. 7.
    Shemetun, O.V. and Pilinska, M.A., Radiation-induced ‘bystander’ effect, Cytol. Genet., 2007, vol. 41, no. 4, pp. 251–255. doi 10.3103/S0095452707040111CrossRefGoogle Scholar
  8. 8.
    Shemetun, O.V., Talan, O.O., and Pilinska, M.A., Cytogenetic characteristics of the radiation-induced bystander effect and its persistence in human blood lymphocytes, Cytol. Genet., 2014, vol. 48, no. 4, pp. 244–249. doi 10.3103/S0095452714040069CrossRefGoogle Scholar
  9. 9.
    Shemetun, O.V. and Talan, O.O., Research of oxidative stress participation in the development of radiation-induced bystander effect in human peripheral blood lymphocytes, Dopov. Nac. Akad. Nauk Ukr., 2014, no. 8, pp. 144–148. org/ doi 10.15407/dopovidi2014.08.144Google Scholar
  10. 10.
    Crouch, J.D. and Brosh, R.M., Mechanistic and biological considerations of oxidatively damaged DNA for helicase-dependent pathways of nucleic acid metabolism, Free Radic. Biol. Med., 2017, vol. 107, pp. 245–257. doi 10.1016/j.freeradbiomed.2016.11.022CrossRefPubMedGoogle Scholar
  11. 11.
    Von Zglinicki, T., Oxidative stress shortens telomeres, Trends Biochem. Sci., 2002, vol. 27, no. 7, pp. 339–344.CrossRefPubMedGoogle Scholar
  12. 12.
    Itri, R., Junqueira, C.H., Mertins, O., and Baptista, S.M., Membrane changes under oxidative stress: the impact of oxidized lipids, Biophys. Rev., 2014, vol. 6, no. 1, pp. 47–61. doi 10.1007/s12551-013-0128-9CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lien Ai Pham-Huy, Hua He, and Chuong Pham-Huy, Free radicals, antioxidants in disease and health, Int. J. Biomed. Sci., 2008, vol. 4, no. 2, pp. 89–96.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Lombard, D.B., Chua, K.F., Mostoslavsky, R., Franco, S., Gostissa, M., and Alt, F.W., DNA repair, genome stability, and aging, Cell, 2005, vol. 120, no. 4, pp. 497–512. doi 10.1016/j.cell.2005.01.028CrossRefPubMedGoogle Scholar
  15. 15.
    Mei-Ren Pan, Kaiyi Li, Shiaw-Yih Lin, and Wen-Chun Hung, Connecting the dots: from DNA damage and repair to aging, Int. J. Mol. Sci., 2016, vol. 17, no. 5, p. 685. doi 10.3390/ijms17050685Google Scholar
  16. 16.
    Little, J.B., Genomic instability and radiation, J. Radiol. Prot., 2002, vol. 23, no. 2, pp. 173–181.CrossRefGoogle Scholar
  17. 17.
    Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M., and Mazur, M., Free radicals, metals and antioxidants in oxidative stress-induced cancer, Chem. Biol. Interact., 2006, vol. 160, no. 1, pp. 1–40. doi 10.1016/j.cbi.2005.12.009CrossRefPubMedGoogle Scholar
  18. 18.
    Joksic, G., Petrovic, S., and Ilic, Z., Age-related changes in radiation-induced micronuclei among healthy adults, Braz. J. Med. Biol. Res., 2004, vol. 37, no. 8, pp. 1111–1117. org/doi 10.1590/S0100-879X2004000800002Google Scholar
  19. 19.
    Sevankaev, A.V., Khvostunov, I.K. and Potetnia, V.I., The low dose and low dose rate cytogenetic effects induced by gamma-radiation in human blood lymphocytes in vitro. II. The results of cytogenetic study, Rad. Biol. Radioecol., 2012, vol. 52, no. 1, pp. 11–24.Google Scholar
  20. 20.
    Gricienė, B. and Slapšytė, G., Assessment of chromosomal aberrations in workers chronically exposed to ionizing radiation, Biologija, 2007, vol. 53, no. 4, pp. 5–10.Google Scholar
  21. 21.
    El-Benhawy, S.A., Sadek, N.A., Behery, A.K., Issa, N.M., and Ali, O.K., Chromosomal aberrations and oxidative DNA adduct 8-hydroxy-2-deoxyguanosine as biomarkers of radiotoxicity in radiation workers, J. Radiat. Res. Appl. Sci., 2016, vol. 9, no. 3, pp. 249–258.CrossRefGoogle Scholar
  22. 22.
    Bochkov, N.P., Chebotarev, A.N., Katosova, L.D., and Platonova, V.I., The Database for analysis of quantitative characteristics of chromosome aberration frequencies in the culture of human peripheral blood lymphocytes, Russ. J. Genet., 2001, vol. 37, no. 4, pp. 440–447.CrossRefGoogle Scholar
  23. 23.
    Sirota, N.P. and Kuznetsova, E.A., Spontaneous DNA damage in peripheral blood leukocytes from donors of different age, Bull. Exp. Boil. Med., 2008, vol. 145, no. 2, pp. 194–197.CrossRefGoogle Scholar
  24. 24.
    Lyubimova, N.E. and Vorobtsova, I.E., The effect of age and low-dose irradiation on the chromosomal aberration frequency in human lymphocytes, Rad. Biol. Radioecol., 2007, vol. 47, no. 1, pp. 80–85.Google Scholar
  25. 25.
    Ahmad, O.B., Boschi-Pinto, C., Christopher, A.D., Murray, J.L., and Lozano, R.L., Age Standardization of Rates: A New WHO Standard, GPE Discussion Paper Series: No.31 EIP/GPE/EBD World Health Organization, 2001.Google Scholar
  26. 26.
    Zirova-Lubimova, T.E. and Horovenko, N.H., Cytogenetic Methods for Studying Human Chromosomes: Guidelines, Kyiv, 2003.Google Scholar
  27. 27.
    ISCN (2013): An International System for Human Cytogenetic Nomenclature, Shaffer, L.G., McGowan-Jordan, J., and Schmid, M., Eds., Basel: S. Karger, 2013.Google Scholar
  28. 28.
    Rosner, B., Fundamentals of Biostatistics, Cengage Learning, 2015, 8th ed.Google Scholar
  29. 29.
    Erceg, P., Milosevic, D.P., Despotovic, N., and Davidovic, M., Chromosomal changes in ageing, J. Genetics, 2007, vol. 86, no. 3, pp. 277–8.CrossRefGoogle Scholar
  30. 30.
    Wojda, A., Zietkiewicz, E., Mossakowska, M., Pawlowski, W., Skrzypczak, K., and Witt, M., Correlation between the level of cytogenetic aberrations in cultured human lymphocytes and the age and gender of donors, J. Gerontol. A Biol. Sci. Med. Sci., 2006, vol. 61, no. 8, pp. 763–772.CrossRefPubMedGoogle Scholar
  31. 31.
    Vorobtsova, I.E., Kanaeva, A.I., Petrova, I.A., Semenov, A.V., Pleskach, N.M., Spivak, I.M., Timo-nina, G.A., Prokof’eva, V.V., Iartseva, N.M., and Mikhel’son, V.M., Age dynamics of stable chromosome aberration frequency in humans with natural and pathological senescence, Tsitologiia, 2004, vol. 46, no. 12, pp. 1030–1034.PubMedGoogle Scholar
  32. 32.
    Vorobtsova, I.E. and Semenov, A.V., The age dynamics of spontaneous and induced in vitro chromosome aberrations in human lymphocytes under natural and radiation induced senescence, Rad. Biol. Radioecol., 2010, vol. 50, no. 3, pp. 253–258.Google Scholar
  33. 33.
    Repina, L.A., Cytogenetic effects of low doses of accelerated charged particles in human blood lymphocytes in vitro, Rad. Biol. Radioecol., 2006, vol. 46, no. 4, pp. 461–465.Google Scholar
  34. 34.
    Payne, B.A. and Chinnery, P.F., Mitochondrial dysfunction in aging: much progress but many unresolved questions, Biochim. Biophys. Acta, 2015, vol. 1847, no. 11, pp. 1347–1353. doi 10.1016/j.bbabio.2015.05.022CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vasylenko, O.P., Pronina, O.V., and Rushkovsky, S.R., Bystander effect in human lymphocytes incubated with irradiated mitochondrial DNA deficient yeast cells, Radioprotection, 2011, vol. 46, no. 6, pp. 555–559. org/ doi 10.1051/radiopro/20116908sGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.National Research Center for Radiation Medicine, National Academy of Medical Sciences of UkraineKyivUkraine
  2. 2.Chebotarev Institute of Gerontology, National Academy of Medical Sciences of UkraineKyivUkraine

Personalised recommendations