Cytology and Genetics

, Volume 52, Issue 6, pp 416–421 | Cite as

Molecular Organization of 5S Ribosomal DNА of Deschapmpsia antarctica

  • O. O. Ishchenko
  • І. І. Panchuk
  • І. O. Andreev
  • V. A. Kunakh
  • R. A. VolkovEmail author


Deschampsіa antarctіca, one of the two angiosperm species growing in the extreme conditions of Antarctica, is a unique model for studying the relationship between genetic polymorphism and such factors of evolution as isolation, migration and adaptation to new environmental conditions. Molecular markers represent a useful tool for the investigation of these questions. To examine the potential of 5S rDNA to be used for the discrimination of D. antarctica populations we cloned and sequenced this genomic region for plants from three populations of this species from Maritime Antarctica. It was shown that in the genome of D. antarctica at least two structural classes of 5S rDNA are present, which differ by numerous base substitutions and insertions/deletions in the intergenic spacer. Based on this structural polymorphism we propose to apply this region for the evaluation of the intraspecific genetic diversity of D. antarctica.


genetic polymorphism molecular evolution 5S rDNA Deschampsіa antarctіca 



Authors express their gratitude to the National Antarctic Scientific Center of Ukraine and personally to Dr. I.A. Kozeretska (Taras Shevchenko Kyiv National University) for the material provided for research.


Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.


  1. 1.
    Parnikoza, I.Y., Maidanuk, D.N., and Kozeretska, I.A., Are Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. migratory relicts?, Cytol. Genet., 2007, vol. 41, no. 4, pp. 226–229. doi 10.3103/ S0095452707040068CrossRefGoogle Scholar
  2. 2.
    Mosyakin, S.L., Bezusko, L.G., and Mosyakin, A.S., Origins of native vascular plants of Antarctica: comments from a historical phytogeography viewpoint, Cytol. Genet., 2007, vol. 41, no. 5, pp. 308–316. doi 10.3103/S009545270705009XCrossRefGoogle Scholar
  3. 3.
    Fasanella, M., Premoli, A.C., Urdampilleta, J.D., Gonzalez, M.L., and Chiapella, J.O., How did a grass reach Antarctica? The Patagonian connection of Deschampsia antarctica (Poaceae), Bot. J. Lin. Soc., 2017, vol. 185, no. 4, pp. 511–524. doi 10.1093/botlinnean/box070CrossRefGoogle Scholar
  4. 4.
    Chwedorzewska, K.J., Bednarek, P.T., and Puchalski, J., Molecular variation of Antarctic grass Deschampsia antarctica Desv. from King George Island (Antarctica), Acta Soc. Bot. Pol., 2004, vol. 73, no. 1, pp. 23–29.CrossRefGoogle Scholar
  5. 5.
    Wouw, M.V.D., Dijk, P.V., and Huiskes, A.H., Regional genetic diversity patterns in Antarctic hairgrass (Deschampsia antarctica Desv.), J. Biogeogr., 2008, vol. 35, no. 2, pp. 365–376. doi 10.1111/j.1365-2699.2007.01784.xGoogle Scholar
  6. 6.
    Andreev, I.O., Spiridonova, E.V., Kyryachenko, S.S., and Parnikoza, I.Yu., Population-genetic analysis of Deschampsia antarctica from two regions of Maritime Antarctica, Moscow Univ. Biol. Sci. Bull., 2010, vol. 65, no. 4, pp. 208–210. doi 10.3103/s00963-92510040243CrossRefGoogle Scholar
  7. 7.
    Andreev, I.O., Volkov, R.A., Kozeretska, I.A., Parnikoza, I.Yu., Spiridonova, K.V., Kiryachenko, S.S., Maydanyuk, D.M., and Kunakh, V.A., Geographical gradient of genetic diversity of Deschampsia antarctica Desv. from the Maritime Antarctic, Ukr. Antarctic J., 2012, nos. 10–11, pp. 282–288.Google Scholar
  8. 8.
    Volkov, R.A., Kozeretska, I.A., Kyryachenko, S.S., Andreev, I.O., Maidanyuk, D.N., Parnikoza, I.Yu., and Kunakh, V.A., Molecular evolution and variability of ITS1 and ITS2 in populations of Deschampsia antarctica from two regions of the Maritime Antarctic, Polar Sci., 2010, vol. 4, no. 3, pp. 469–478. doi 10.1016/j.polar.2010.04.011Google Scholar
  9. 9.
    González, M.L., Urdampilleta, J.D., Fasanella, M., Premoli, A.C., and Chiapella, J.O., Distribution of rDNA and polyploidy in Deschampsia antarctica E. Desv. in Antarctic and Patagonic populations, Polar Biol., 2016, vol. 39, no. 9, pp. 1663–1677. doi 10.1007/ s00300-016-1890-5CrossRefGoogle Scholar
  10. 10.
    González, M.L., Chiapella, J.O., and Urdampilleta, J.D., Characterization of some satellite DNA families in Deschampsia antarctica (Poaceae), Polar Biol., 2017, vol. 41, no. 3, pp. 457–468. doi 10.1007/s00300-017-2205-1CrossRefGoogle Scholar
  11. 11.
    Röser, M., Winterfeld, G., Grebenstein, B., and Hemleben, V., Molecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses (Poaceae: Aveneae), Mol. Phylogen. Evol., 2001, vol. 21, no. 2, pp. 198–217. doi 10.1006/mpev.2001.1003CrossRefGoogle Scholar
  12. 12.
    Peng, Y.Y., Wei, Y.M., Baum, B.R., and Zheng, Y.L., Molecular diversity of the 5S rRNA gene and genomic relationships in the genus Avena (Poaceae: Aveneae), Genome, 2008, vol. 51, no. 2, pp. 137–154. doi 10.1139/G07-111Google Scholar
  13. 13.
    Baum, B.R. and Feldman, M., Elimination of 5S DNA unit classes in newly formed allopolyploids of the genera Aegilops and Triticum, Genome, 2010, vol. 53, no. 6, pp. 430–8. doi 10.1139/G10-017Google Scholar
  14. 14.
    Baum, B.R., Edwards, T., and Johnson, A., Codependence of repetitive sequence classes in genomes: phylogenetic analysis of 5S rDNA families in Hordeum (Triticeae: Poaceae), Genome, 2010, vol. 53, no. 3, pp. 180–202. doi 10.1139/g09-096CrossRefPubMedGoogle Scholar
  15. 15.
    Baum, B.R., Edwards, T., Mamuti, M., and Johnson, D.A., Phylogenetic relationships among the polyploid and diploid Aegilops species inferred from the nuclear 5S rDNA sequences (Poaceae: Triticeae), Genome, 2012, vol. 55, no. 3, pp. 177–193. doi 10.1139/g2012-006CrossRefPubMedGoogle Scholar
  16. 16.
    Volkov, R.A., Zanke, C., Panchuk, I.I., and Hemleben, V., Molecular evolution of 5S rDNA of Solanum species (sect. Petota): application for molecular phylogeny and breeding, Theor. Appl. Genet., 2001, vol. 103, no. 8, pp. 1273–1282. doi 10.1007/s001220100670CrossRefGoogle Scholar
  17. 17.
    Saini, A. and Jawali, N., Molecular evolution of 5S rDNA region in Vigna subgenus Ceratotropis and its phylogenetic implications, Plant Syst. Evol., 2009, vol. 280, no. 3–4, pp. 187–206. doi 10.1007/s00606-009-0178-4CrossRefGoogle Scholar
  18. 18.
    Garcia, S., Garnatje, T., and Kovarik, A., Plant rDNA database: ribosomal DNA loci information goes online, Chromosoma, 2012, vol. 121, no. 4, pp. 389–394. doi 10.1007/s00412-012-0368-7CrossRefPubMedGoogle Scholar
  19. 19.
    Tynkevich, Y.O., Nevelska, A.O., Chorney, I.I., and Volkov, R.A., Organization and variability of the 5S rDNA intergenic spacer of Lathyrus venetus, Bull. Vavilov Soc. Genet. Breed. Ukraine, 2015, vol. 13, no. 1, pp. 81–87.Google Scholar
  20. 20.
    Volkov, R.A., Panchuk, I.I., Borisjuk, N.V., Hosiawa-Baranska, M., Maluszynska, J., and Hemleben, V., Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna, BMC Plant Biol., 2017, vol. 17, no. 1, pp. 1–15. doi 10.1186/ s12870-017-0978-6CrossRefGoogle Scholar
  21. 21.
    Volkov, R.A., Medina, F.J., Zentgraf, U., and Hemleben, V., Molecular cell biology: organization and molecular evolution of rDNA, nucleolar dominance, and nucleolus structure, Progr. Bot., 2004, vol. 65, pp. 106–146.CrossRefGoogle Scholar
  22. 22.
    Cloix, C., Tutois, S., Mathieu, O., Cuvillier, C., Espagno, M.C., Picard, C., and Tourmente, S., Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms, Genome Res., 2000, vol. 10, no. 5, pp. 679–690. doi 10.1101/gr.10.5.679CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Coen, E.S., Thoday, J.M., and Dover, G., Rate of turnover of structural variants in the rDNA gene family of Drosophila melanogaster, Nature, 1982, vol. 295, no. 5850, pp. 564–568.CrossRefPubMedGoogle Scholar
  24. 24.
    Volkov, A.R. and Panchuk, I.I., 5S rDNA of Dactylis glomerata (Poaceae): molecular organization and taxonomic application, Bull. Vavilov Soc. Genet. Breed. Ukraine, 2014, vol. 12, no. 1, pp. 3–11.Google Scholar
  25. 25.
    Rusak, O.O., Petrashchuk, V.I., Panchuk, I.I., and Volkov, R.A., Molecular organization of 5S rDNA in two Ukrainian populations of sycamore (Acer pseudoplatanus), Bull. Vavilov Soc. Genet. Breed. Ukraine, 2016, vol. 14, no. 2, pp. 216–220.Google Scholar
  26. 26.
    Rogers, S.O. and Bendich, A.J., Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues, Plant Mol. Biol., 1985, vol. 5, no. 2, pp. 69–76. doi 10.1007/BF00020088CrossRefPubMedGoogle Scholar
  27. 27.
    Tynkevich, Y.O. and Volkov, R.A., Structural organization of 5S ribosomal DNA in Rosa rugosa, Cytol. Genet., 2014, vol. 48, no. 1, pp. 1–6. doi 10.3103/ S0095452714010095CrossRefGoogle Scholar
  28. 28.
    Sambrook, J., Fritsch, E., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory, 1989.Google Scholar
  29. 29.
    Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994, vol. 22, no. 22, pp. 4673–4680.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nuclec Acids Res., 1997, vol. 25, no. 17, pp. 3389–3402.CrossRefGoogle Scholar
  31. 31.
    Soreng, R.J., Peterson, P.M., Romschenko, K., Davidse, G., Zuloaga, F.O., Judziewicz, E.J., Filgueiras, T.S., Davis, J.I., and Morrone, O.A., A worldwide phylogenetic classification of the Poaceae (Gramineae), J. Syst. Evol., 2015, vol. 53, no. 2, pp. 117–137. doi 10.1111/jse.12150/epdfCrossRefGoogle Scholar
  32. 32.
    Douet, J. and Tourmente, S., Transcription of the 5S rRNA heterochromatic genes is epigenetically controlled in Arabidopsis thaliana and Xenopus laevis, Heredity, 2007, vol. 99, no. 1, pp. 5–13. doi 10.1038/sj.hdy.6800964CrossRefPubMedGoogle Scholar
  33. 33.
    Baum, B.R., Bailey, L.G., Belyayev, A., Raskina, O., and Nevo, E., The utility of the nontranscribed spacer of 5S rDNA units grouped into unit classes assigned to haplomes—a test on cultivated wheat and wheat progenitors, Genome, 2004, vol. 47, no. 3, pp. 590–599. doi 10.1139/g03-146CrossRefPubMedGoogle Scholar
  34. 34.
    Amosova, A.V., Bolsheva, N.L., Zoshchuk, S.A., Twardovska, M.O., Yurkevich, O.Y., Andreev, I.O., Samatadze, T.E., Badaeva, E.D., Kunakh, V.A., and Muravenko, O.V., Comparative molecular cytogenetic characterization of seven Deschampsia (Poaceae) species, PLoS One, 2017, vol. 12, no. 4. e0175760. doi 10.1371/journal.pone.0175760CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • O. O. Ishchenko
    • 1
  • І. І. Panchuk
    • 1
  • І. O. Andreev
    • 2
  • V. A. Kunakh
    • 2
  • R. A. Volkov
    • 1
    Email author
  1. 1.Yuriy Fedkovych Chernivtsi National UniversityChernivtsiUkraine
  2. 2.Institute of Molecular Biology and Genetics, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations