Cytology and Genetics

, Volume 52, Issue 6, pp 448–460 | Cite as

Molecular Genetic Evaluation of Ukrainian Flax Cultivar Homogeneity Based on Intron Length Polymorphism of Actin Genes and Microsatellite Loci

  • A. S. PostovoitovaEmail author
  • O. Yu. YotkaEmail author
  • Ya. V. PirkoEmail author
  • Ya. B. BlumeEmail author


The intron length polymorphism of actin genes and microsatellite loci was investigated to evaluate the genetic homogeneity of flax cultivars of Ukrainian breeding. It is established that the vast majority of flax cultivars are genetically heterogeneous. The cultivars Esman, Siverskyi, and Glazur, bred at the Institute of Bast Crops of the National Academy of Agricultural Sciences of Ukraine, were found to be genetically homogeneous according to the results of analysis of the intron length polymorphism of actin genes and microsatellite markers. It was shown that the intron length polymorphism of actin genes is not a less-informative marker system for genetic profiling than popular SSR markers. Data were obtained confirming the expediency of further simultaneous use of the mentioned DNA marker systems to evaluate the genetic diversity of flax cultivars.


: DNA marker actin intron length polymorphism SSR (simple sequence repeats) intravarietal polymorphism flax (Linum usitatissimum L.) 



  1. 1.
    Gupta, P.K. and Rustgi, S., Molecular markers from the transcribed/expressed region of the genome in higher plants, Funct. Integr. Genomics, 2004, vol. 4, no. 3, pp. 139–162. doi 10.1007/s10142-004-0107-0CrossRefPubMedGoogle Scholar
  2. 2.
    Andersen, J.R. and Lübberstedt, T., Functional markers in plants, Trends Plant Sci., 2003, vol. 8, no. 11, pp. 554–560. doi 10.1016/j.tplants.2003.09.010CrossRefPubMedGoogle Scholar
  3. 3.
    Kalendar, R., Flavell, A.J., Ellis, T.H.N., Sjakste, T., Moisy, C., and Schulman, A.H., Analysis of plant diversity with retrotransposon-based molecular markers, Heredity, 2011, vol. 106, no. 4, pp. 520–530. doi 10.1038/hdy.2010.93CrossRefPubMedGoogle Scholar
  4. 4.
    Everaert, I., Riek, J.D., Loose, M.D., Waes, J.V., and Bockstaele, E.V., Most similar variety grouping for distinctness evaluation of flax and linseed (Linum usitatissimum L.) varieties by means of AFLP and morphological data, Plant Var. Seeds, 2001, vol. 14, no. 2, pp. 69–87.Google Scholar
  5. 5.
    Ranamukhaarachchi, D.G., Kane, M.E., Guy, C.L., and Li, Q.B., Modified AFLP technique for rapid genetic characterization in plants, Biotechniques, 2000, vol. 29, no. 4, pp. 858–866.CrossRefPubMedGoogle Scholar
  6. 6.
    Pali, V., Mehta, N., Balkrishna, V.S., Xalxo, M.S., and Saxena, R.R., Molecular diversity in flax (Linum usitatissimum L.) as revealed by DNA based markers, Vegetos, 2015, vol. 28, no. 1, pp. 157–165. doi 10.5958/ 2229-4473.2015.00022.1Google Scholar
  7. 7.
    Fu, Y.B., Redundancy and distinctiveness in flax germplasm as revealed by RAPD dissimilarity, Plant Genet. Res., 2006, vol. 4, no. 2, pp. 117–124. doi 10.1079/ PGR2005106CrossRefGoogle Scholar
  8. 8.
    Simmons, M.P., Zhang, L.B., Webb, C.T., and Müller, K., A penalty of using anonymous dominant markers (AFLPs, ISSRs, and RAPDs) for phylogenetic inference, Mol. Phylogenet. Evol., 2007, vol. 42, no. 2, pp. 528–542. doi 0.1016/j.ympev.2006.08.008CrossRefPubMedGoogle Scholar
  9. 9.
    Pali, V., Verma, K.S., Xalxo, M.S., Saxena, R.R., Mehta, N., and Verulkar, S.B., Identification of microsatellite markers for fingerprinting popular Indian flax (Linum usitatissimum L.) cultivars and their utilization in seed genetic purity assessments, Austral. J. Crop Sci., 2014, vol. 8, no. 1, pp. 119–126.Google Scholar
  10. 10.
    Singh, P., Mehta, N., and Sao, A., Genetic purity assessment in linseed (Linum usitatissimum L.) varieties using microsatellite markers, Suppl. Genetics Plant Breed., 2015, vol. 10, no. 4, pp. 2031–2036.Google Scholar
  11. 11.
    Varshney, R.K., Mahendar, T., Aggarwal, R.K., and Borner, A., Genetic molecular markers in plants: development and applications, Genomics-Assisted Crop Improvement, 2007, vol. 1, pp. 13–29. doi 10.1007/978-1-4020-6295-7_2CrossRefGoogle Scholar
  12. 12.
    Wang, X., Zhao, X., Zhu, J., and Wu, W., Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.), DNA Res., 2005, vol. 12, no. 6, pp. 417–427. doi 10.1093/dnares/dsi019CrossRefPubMedGoogle Scholar
  13. 13.
    Väli, U., Brandström, M., Johansson, M., and Ellegren, H., Insertion-deletion polymorphisms (indels) as genetic markers in natural populations, BMC Genet., 2008, vol. 9, no. 1, p. 8. doi 10.1186/1471-2156-9-8CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Postovoitova, A.S., Bayer, G.Ya., Pydiura, N.A., Pastukhova, N.L., Pirko, Ya.V., Yemets, A.I., and Blume, Ya.B., Search and analysis of sequences of the actin genes in flax genome, Sci. Rep. NULES Ukraine, 2015, vol. 8, no. 57.Google Scholar
  15. 15.
    Bardini, M., Lee, D., Donini, P., Mariani, A., Giani, S., Toschi, M., Lowe, C., and Breviario, D., Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species, Genome, 2004, vol. 47, no. 2, pp. 281–291. doi 10.1139/g03-132CrossRefPubMedGoogle Scholar
  16. 16.
    Pirko, Ya.V., Studying of genetic diversity different species of plants by analyzing polymorphism of introns of β-tubulin genes, Industr. Bot., 2011, vol. 11, pp. 152–156.Google Scholar
  17. 17.
    Braglia, L., Manca, A., Mastromauro, F., and Breviario, D., cTBP: a successful intron length polymorphism (ILP)-based genotyping method targeted to well defined experimental needs, Diversity, 2010, vol. 2, pp. 572–585. doi 10.3390/d2040572CrossRefGoogle Scholar
  18. 18.
    Rabokon, N., Pirko, Ya., Demkovych, A., and Blume, Ya., Intron length polymorphism of betatubulin genes as an effective instrument for plant genotyping, Mol. Appl. Genet. (Minsk), 2015, vol. 19, pp. 35–44.Google Scholar
  19. 19.
    Postovoitova, A.S., Pirko, Ya.V., and Blume, Ya.B., The second intron length polymorphism of actin genes in Linum usitatissimum L. genome, Factors Exp. Evol. Organisms, 2016, vol. 19, pp. 38–42.Google Scholar
  20. 20.
    Kvavadze, E., Bar-Yosef, O., Belfer-Cohen, A., Boaretto, E., Jakeli, N., Matskevich, Z., and Meshveliani, T., 30,000-Year-old wild flax fibers, Science, 2009, vol. 325, no. 5946, pp. 1359–1367. doi 10.1126/ science.1175404CrossRefPubMedGoogle Scholar
  21. 21.
    Jhala, A.J. and Hall, L.M., Flax (Linum usitatissimum L.): current uses and future applications, Austral. J. Basic Appl. Sci., 2010, vol. 4, no. 9, pp. 4304–4312.Google Scholar
  22. 22.
    Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant, 1962, vol. 15, pp. 473–497. Scholar
  23. 23.
    Sambrook, J.F. and Russell, D.W., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, 2001.Google Scholar
  24. 24.
    Rahman, M.H., Jaquish, B., and Khasa, P.D., Optimization of PCR protocol in microsatellite analysis with silver and SYBR stains, Plant Mol. Biol. Rep., 2000, vol. 18, no. 4, pp. 339–348.CrossRefGoogle Scholar
  25. 25.
    Kondratyuk, A.V., Kilchevsky, A.V., and Kuzminova, E.I., Microsatellite loci polymorphism analysis of Belarussian and foreign breeding potato varieties, Mol. Appl. Genet. (Minsk), 2005, vol. 13, pp. 24–29.Google Scholar
  26. 26.
    Rabokon, A.N., Pirko, Ya.V., Demkovych, A.Ye., and Blume, Ya.B., Comparative analysis of the efficiency of intron-length polymorphism of -tubulin genes and microsatellite loci for flax varieties genotyping, Cytol. Genet., 2018, vol. 52, no. 1, pp. 1–10. doi 10.3103/ S0095452718010115CrossRefGoogle Scholar
  27. 27.
    Pydiura, N., Pirko, Ya., Galinousky, D., Postovoitova, A., Yemets, A., Kilchevsky, A., and Blume, Ya., Genome-wide identification, phylogenetic classification, and exon–intron structure characterisation of the tubulin and actin genes in flax (Linum usitatissimum), Cell Biol. Int., 2018. doi 10.1002/cbin.11001Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Food Biotechnology and Genomics, National Academy of Sciences of UkraineKyivUkraine
  2. 2.Institute of Bast Crops, National Academy of Agricultural Sciences of UkraineHlukhivUkraine

Personalised recommendations