Advertisement

Cytology and Genetics

, Volume 52, Issue 6, pp 422–427 | Cite as

Nucleus Fragmentations in Diploid-Polyploid Populations of Spined-Loaches of the Genus Cobitis Linnaeus, 1758

  • S. V. MezhzherinEmail author
  • A. A. Tsyba
  • T. V. Saliy
  • L. I. Pavlenko
Article
  • 11 Downloads

Abstract

Analysis of 11 diploid-polyploid samples of spined loaches of the genus Cobitis from the aquatic systems of Ukraine showed that the increase in the number of micronuclei in red blood cells positively correlates with the ploidy and cell size. In diploid individuals of parental species, micronuclei cells average 0.12%, whereas they average 0.52, 1.39, and 4.72% in hybrid triploids, tetraploids, and probable pentaploids, respectively. Since triploid and tetraploid specimens in joint colonies tend to prevail over diploid ones, it can be concluded that minor disturbances in the genetic apparatus do not significantly affect the fitness, whereas an increase in the number of chromosomal sets over four is already accompanied by dysfunctions critical to normal life activity. Apparently, it is this circumstance that has led to the absence or extreme rarity of the pentaploid states in the clonal vertebrates, whereas penta-, hexa-, octo-, and even decaploid states are common in the lower invertebrates, for example earthworms. The latter is probably due to the fact that the minimum size of the genome in earthworms is several times smaller than in teleosts, which allows lower invertebrates to increase the number of chromosomal sets by more than fourfold.

Keywords:

nucleus fragmentation diploid-polyploid complex genome size spined-loaches Cobitis 

Notes

REFERENCES

  1. 1.
    al-Sabti, K. and Metcalfe, C.D., Fish micronuclei for assessing genotoxicity in water, Mutat. Res., 1995, vol. 343, nos. 2–3, pp. 121–135.CrossRefPubMedGoogle Scholar
  2. 2.
    Galindo, T.P. and Moreira, L.M., Evaluation of genotoxicity using the micronucleus assay and nuclear abnormalities in the tropical sea fish Bathygobius soporator (Valenciennes, 1837) (Teleostei, Gobiidae), Genet. Mol. Biol., 2009, vol. 32, no. 2, pp. 394–398.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hussain, B., Sultana, T., Sultana, S., Masoud, M.S., Ahmed, Z., and Mahboob, S., Fish eco-genotoxicology: comet and micronucleus assay in fish erythrocytes as in situ biomarker of freshwater pollution, Saudi J. Biol. Sci., 2018, vol. 25, no. 2, pp. 393–398.CrossRefPubMedGoogle Scholar
  4. 4.
    Heddle, J.A., A rapid in vivo test for chromosomal damage, Mutat. Res., 1973, vol. 18, no. 2, pp. 187–190.CrossRefPubMedGoogle Scholar
  5. 5.
    Bolognesi, C. and Hayashi, M., Micronucleus assay in aquatic animals, Mutagenesis, 2011, vol. 26, no. 1, pp. 205–213.CrossRefPubMedGoogle Scholar
  6. 6.
    Janko, K., Flajšhans, M., Choleva, L., Bohlen, J., ŠLechtová, V., Rábová, M., Lajbner, Z., ŠLechta, V., Ivanova, P., Dobrovolov, I., Culling, M., Persat, H., Kotusz, J., and Ráb, P., Diversity of European spined loaches (genus Cobitis L.,): an update of the geographic distribution of the Cobitis taenia hybrid complex with a description of new molecular tools for species and hybrid determination, J. Fish. Biol., 2007, vol. 71, pp. 387–408. doi.org/10.1111/j.1095-8649.2007.01663.xGoogle Scholar
  7. 7.
    Mezhzherin, S.V. and Chudakorova, T.Y., Expansions of triploid unisexual spined loaches Cobitis taenia L. 1758 (Cypriniformes, Cobitidae) in watercourses of Ukraine, Rep. Nat. Acad. Sci. Ukraine, 2001, no. 9, pp. 153–157.Google Scholar
  8. 8.
    Mezhzherin, S.V., Saliy, T.V., Ysyba, A.A., and Losev, A.A., Life potentials of amphictic and apomictic spined loaches (Cypriniformes, Cobitidae, Cobitis): comparisons of trypanosome infections and nuclear fragmentation number, Rep. Nat. Acad. Sci. Ukraine, 2017, no. 11, pp. 83–88.Google Scholar
  9. 9.
    Ivanova, N.T., Atlas of the Fish Blood Cells: Comparative Morphology and Classification of Fish Blood Uniform Elements, Moscow: Light and Food Industry, 1983.Google Scholar
  10. 10.
    Vasil'ev V.P., Vasil'eva E.D., Osinov A.G., On the problem of reticular speciation in vertebrates: di-tri-tetrapoloid complex in Cobitis genus (Cobitidae). III. Origin of triploid form, J. Ichthyol., 1990, vol. 30, no. 4, pp. 543–550.Google Scholar
  11. 11.
    Vasil’ev V.P., Vasil’eva E.D., Osinov A.G., On the problem of reticular speciation in vertebrates: di-tri-tetrapoloid complex in Cobitis genus (Cobitidae). IV. Tetraploid forms, J. Ichthyol., 1990, vol. 30, no. 6, pp. 908–919.Google Scholar
  12. 12.
    Slechtova, V., Luskova, V., Slechta, V., Lusk, S., Halacka, K., and Bohlen, J., Genetic differentiation of two diploid-polyploid complexes of spined loach, genus Cobitis (Cobitidae), in the Czech Republic, involving C. taenia, C. elongatoides, and C. spp.: allozyme interpopulation and interspecific differences, Folia Zool., 2000, vol. 49, no. 1, pp. 67–78.Google Scholar
  13. 13.
    Vasil’ev, V.P., Evolutionary Karyology of Fish, Moscow: Nauka, 1985.Google Scholar
  14. 14.
    Vrijenhoek, R.C., Dawley, R.M., Cole, C.J., and Bogart, J.P., A list of known unisexual vertebrates, in Evol. Ecol. Unisex. Vertebrate, Dawley, R.M. and Bogart, P., Eds., Bull. no. 466, 1989, pp. 19–23.Google Scholar
  15. 15.
    Mezhzherin, S.V., Garbar, A.V., Vlasenko, R.P., Onyschuk, I.P., Kotsyuba, I.Yu., and Zhalay, E.I., Evolutionary Paradox of Parthenogenetic Earthworms, Kiev: Naukova Dumka, 2018.Google Scholar
  16. 16.
    Gregory, T.R., Animal genome size database (electronic version), 2012. http://www.genomesize.com.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • S. V. Mezhzherin
    • 1
    Email author
  • A. A. Tsyba
    • 1
  • T. V. Saliy
    • 1
  • L. I. Pavlenko
    • 1
  1. 1.Schmalhausen Institute of Zoology, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations