Advertisement

Cytology and Genetics

, Volume 52, Issue 6, pp 440–447 | Cite as

Studying Recombination between the 1RS Arms from the Rye Petkus and Insave Involved in the 1BL.1RS and 1AL.1RS Translocations using Storage Protein Loci as Genetic Markers

  • N. A. KozubEmail author
  • I. A. SozinovEmail author
  • A. V. KarelovEmail author
  • H. Ya. BidnykEmail author
  • N. A. DemianovaEmail author
  • O. I. SozinovaEmail author
  • Ya. B. BlumeEmail author
  • A. A. Sozinov
Article

Abstract

A population of F6 recombinant inbred lines from the cross between winter common wheat lines with the wheat-rye translocations 1BL.1RS (of the Kavkaz type) and 1АL.1RS (of the Amigo type), B-16 × 7086 AR, was produced. Using the storage protein loci Gli-R1, Gli-A1, and Gli-B1 as genetic markers, lines with recombinant 1RS (12%) were identified and the frequency of recombination between 1RS involved in different translocations was determined as 7%. 1RS from Amigo was demonstrated to carry a gene encoding the secalin “a”, which can be identified on SDS electrophoregrams under the y-subunit encoded by the Glu-D1 locus. The secalin “a” was also revealed in the cultivar MV Táltos, which was shown to carry the 1BL.1RS translocation with secalin alleles of the Amigo type. The gene encoding the secalin “a” was found to be allelic to the gene Sec-Nx from the rye Voronezhske SGI. The frequency of recombination between the loci Gli-R1 and Sec-N depends on the nature of the material analyzed and amounts about 10% (the genetic distance of 10 cM) in the cross MV Táltos × CWX (the lines with different 1BL.1RS translocations). Such a distance suggests that important disease and pest resistance genes, in particular stem rust resistance genes, are within the region flanked by these loci. Because of this the secalin loci are convenient for primary screening for recombinant 1RS arms with new combinations of disease and pest resistance genes.

Keywords:

Triticum aestivum L. recombinant inbred lines 1BL.1RS 1АL.1RS secalin loci recombination stem rust genes 

REFERENCES

  1. 1.
    Schlegel, R., Current list of wheats with rye and alien introgression V05-16, 1–18, 2016. http://www.ryegene-map.de/rye-introgression.Google Scholar
  2. 2.
    Rabinovich, S.V., Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L., Euphytica, 1998, vol. 100, nos. 1–3, pp. 323–340.CrossRefGoogle Scholar
  3. 3.
    Lerner, S.E., Kolman, M.A., and Rogers, W.J., Quality and endosperm storage protein variation in Argentinian grown bread wheat. I Allelic diversity and discrimination between cultivars, J. Cereal Sci., 2009, vol. 49, no. 3, pp. 337–345. doi 10.1016/j.jcs.2008.04.003CrossRefGoogle Scholar
  4. 4.
    Purnhauser, L., Bona, L., and Lang, L., Identification of Sr31 and Sr36 stem rust resistance genes in wheat cultivars registered in Hungary, Cer. Res. Comm., 2011, vol. 39, no. 1, pp. 53–66. doi.org/10.1556/CRC.39.2011.1.6Google Scholar
  5. 5.
    Zhang, L.Y., Liu, D.C., Guo, X.L., Yang, W.L., Sun, J.Z., Wang, D.W., Sourdille, P., and Zhang, A.M., Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers, BMC Genetics, 2011. doi 10.1186/1471-2156-12-42Google Scholar
  6. 6.
    Kozub, N.A., Sozinov, I.A., Karelov, A.V., Blume, Ya.B., and Sozinov, A.A., Diversity of Ukrainian winter common wheat varieties with respect to storage protein loci and molecular markers for disease resistance genes, Cytol. Genet., 2017, vol. 51, no. 2, pp. 117–129. doi 10.3103/S0095452717020050CrossRefGoogle Scholar
  7. 7.
    Sebesta, E.E. and Wood, E.A., ·Porter D.R., Webster J.A., Smith E.L. Registration of Gaucho greenbug-resistant triticale germplasm, Crop Sci., 1994, vol. 34, p. 1428.CrossRefGoogle Scholar
  8. 8.
    McIntosh, R.A., Catalogue of Gene Symbols. Gene Catalogue, 2013. https://shigen.nig.ac.jp/wheat/komugi/ genes/macgene/2013/GeneSymbol.pdf.Google Scholar
  9. 9.
    Pretorius, Z.A., Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda, Plant Dis., 2000, vol. 84, no. 2, p. 203. doi.org/10.1094/PDIS.2000.84.2.203BGoogle Scholar
  10. 10.
    Singh, R.P., Hodson, D.P., Jin, Y., Lagudah, E.S., Ayliffe, M.A., Bhavani, S., Rouse, M.N., Pretorius, Z.A., Szabo, L.J., Huerta-Espino, J., Basnet, B.R., Lan, C., and Hovmoller, M.S., Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control, Phytopathology, 2015, vol. 105, no. 7, pp. 872–884. doi 10.1094/PHYTO-01-15-0030-FICrossRefPubMedGoogle Scholar
  11. 11.
    Olivera, P.D., Jin, Y., Rouse, M., Badebo, A., Fetch, T., Jr., Singh, R.P., and Yahyaoui, A., Races of Puccinia graminis f. sp. tritici with combined virulence to Sr13 and Sr9e in a field stem rust screening nursery in Ethiopia, Plant Dis., 2012, vol. 96, no. 5, pp. 623–628. doi.org/10.1094/PDIS-09-11-0793Google Scholar
  12. 12.
    Mago, R., Zhang, P., Vautrin, S., Šimková, H., Bansal, U., Luo, M.C., Rouse, M., Karaoglu, H., Periyannan, S., Kolmer, J., Jin, Y., Ayliffe, M.A., Bariana, H., Park, R.F., McIntosh, R., Doležel, J., Bergès, H., Spielmeyer, W., Lagudah, E.S., Ellis, J.G., and Dodds, P.N., The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus, Nat. Plants, 2015, vol. 1, p. 15186. doi 10.1038/nplants.2015.186CrossRefPubMedGoogle Scholar
  13. 13.
    Bhattacharya, S., Deadly new wheat disease threatens Europe’s crops, Nature, vol. 542, no. 7640, pp. 145–146. doi 10.1038/nature.2017.21424Google Scholar
  14. 14.
    Zhao, C., Cui, F., Wang, X., Shan, S., Li, X., Bao, Y., and Wang, H., Effects of 1BL/1RS translocation in wheat on agronomic performance and quality characteristics, Field Crops Res., 2012, vol. 127, pp. 79–84. doi 10.1016/j.fcr.2011.11.008CrossRefGoogle Scholar
  15. 15.
    Ehdaie, B., Whitkus, R.W., and Waines, J.G., Root biomass, water-use efficiency, and performance of wheat rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’, Crop Sci., 2003, vol. 43, no. 2, pp. 710–717. doi 10.2135/cropsci2003.0710CrossRefGoogle Scholar
  16. 16.
    Kim, W., Johnson, J.W., Baenziger, P.S., Lukaszewski, A.J., and Gaines, C.S., Agronomic effect of wheat–rye translocation carrying rye chromatin (1R) from different sources, Crop Sci., 2004, vol. 44, no. 4, pp. 1254–1258.CrossRefGoogle Scholar
  17. 17.
    Howell, T., Hale, I., Jankuloski, L., Bonafede, M., Gilbert, M., and Dubcovsky, J., Mapping a region within the 1RS.1BL translocation in bread wheat affecting grain yield and canopy water status, Theor. Appl. Genet., 2014, vol. 127, no. 12, pp. 2695–2709. doi 10.1007/s00122-014-2408-6CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sharma, S., Bhat, P.R., Ehdaie, B., Close, T.J., Lukashewski, A.J., and Waines, J.G., Integrated genetic map and genetic analysis of a region associated with root traits on the short arm of rye chromosome 1 in bread wheat, Theor. Appl. Genet., 2009, vol. 119, no. 5, pp. 783–793. doi 10.1007/S00122-009-1088-0CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kumlay, A.M., Baenziger, P.S., Gill, K.S., Shelton, D.R., Graybosch, R.A., Lukaszewski, A.J., and Wesenberg, D.M., Understanding the effect of rye chromatin in bread wheat, Crop Sci., 2003, vol. 43, no. 5, pp. 1643–1651. doi 10.2135/cropsci2003.1643CrossRefGoogle Scholar
  20. 20.
    Karki, D., Wyant, IIIW., Berzonsky, W.A., and Glover, K.D., Investigating physiological and morphological mechanisms of drought tolerance in wheat (Triticum aestivum L.) lines with 1RS translocation, Am. J. Plant Sci., 2014, vol. 5, no. 13, pp. 1936–1944. doi 10.4236/ajps.2014.513207CrossRefGoogle Scholar
  21. 21.
    Sozinov, A.A. and Poperelya, F.A., Genetic classification of prolamines and its use for plant breeding, Ann. Technol. Agric., 1980, vol. 29, no. 2, pp. 229–245.Google Scholar
  22. 22.
    Metakovsky, E.V., Gliadin allele identification in common wheat. II Catalogue of gliadin alleles in common wheat, J. Genet. Breed., 1991, vol. 45, no. 4, pp. 325–344.Google Scholar
  23. 23.
    Sobko, T.A. and Poperelya, F.A., The frequency of alleles of gliadin-coding loci in different cultivars of winter common wheat, Visn. Silskogospodar. Nauki, 1986, no. 5, pp. 84–87.Google Scholar
  24. 24.
    Kozub, N.A., Sozinov, I.A., Sobko, T.A., Kolyuchii, V.T., Kuptsov, S.V., and Sozinov, A.A., Variation at storage protein loci in winter common wheat cultivars of the Central Forest-Steppe of Ukraine, Cytol. Genet., 2009, vol. 43, no. 1, pp. 55–62.CrossRefGoogle Scholar
  25. 25.
    Shewry, P.R., Bradberry, D., Franklin, J., and White, R.P., The chromosomal locations and linkage relationships of the structural genes for the prolamin storage proteins (secalins) of rye, Theor. Appl. Genet., 1984, vol. 69, no. 1, pp. 63–69. doi 10.1007/BF00262541CrossRefPubMedGoogle Scholar
  26. 26.
    Lawrence, G.J. and Shepherd, K.W., Chromosomal location of genes controlling seed proteins in species related to wheat, Theor. Appl. Genet., 1981, vol. 59, no. 1, pp. 25–31. doi 10.1007/BF00275771CrossRefPubMedGoogle Scholar
  27. 27.
    Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, no. 5259, pp. 680–685.CrossRefPubMedGoogle Scholar
  28. 28.
    Motsnyi, I.I., Fayt, V.I., and Blagodarova, E.M., Identification and characteristics of the 1R (1B) substitution lines of bread wheat, Cytol. Genet., 2009, vol. 43, no. 3. pp. 169–76. doi 10.3103/S0095452709030050CrossRefGoogle Scholar
  29. 29.
    Kozub, N.A., Motsnyi, I.I., Sozinov, I.A., Blume, Ya.B., and Sozinov, A.A., Mapping a new secalin locus on the rye 1RS arm, Cytol. Genet., 2014, vol. 48, no. 4, pp. 203–207. doi 10.3103/s0095452714040021CrossRefGoogle Scholar
  30. 30.
    Haldane, J.B.S. and Waddington, C.H., Inbreeding and linkage, Genetics, 1931, vol. 16, pp. 357–374.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Netsvetaev, V.P., Obraztsov, I.S., and Sozinov, A.A., Mapping the Hrd G locus in barley chromosome 5, in Molecular Mechanisms of Genetic Processes, Proceedings of the Vth All-Union Symposium, Moscow: Nauka, 1982.Google Scholar
  32. 32.
    Singh, N.K. and Shepherd, K.W., Linkage mapping of the genes controlling endosperm proteins in wheat. I. Genes on the short arm of group I chromosomes, Theor. Appl. Genet., 1998, vol. 75, no. 4, pp. 628–641.CrossRefGoogle Scholar
  33. 33.
    Mater, Y., Baenziger, S., Gill, K., Graybosch, R., Whitcher, L., Baker, C., Specht, J., and Dweikat, I., Linkage mapping of powdery mildew and greenbug resistance genes on recombinant 1RS from Amigo and Kavkaz wheat–rye translocations on chromosome 1RS.1AL, Genome, 2004, vol. 47, no. 2, pp. 292–8. doi 10.1139/g03-101CrossRefPubMedGoogle Scholar
  34. 34.
    Schneider, A. and Molnár-Láng, M., Detection of the 1RS chromosome arm in Martonvásár wheat genotypes containing 1BL·1RS or 1AL·1RS translocations using SSR and STS markers, Acta Agron. Hung., 2009, vol. 57, no. 4, pp. 409–416. doi.org/10.1556/AAgr.57.2009.4.3Google Scholar
  35. 35.
    Singh, N.K., Shepherd, K.W., and McIntosh, R.A., Linkage mapping of genes for resistance to leaf, stem and stripe rusts and ώ-secalins on the short arm of rye chromosome 1R, Theor. Appl. Genet., 1990, vol. 80, no. 5, pp. 609–616. doi 10.1007/BF00224219CrossRefPubMedGoogle Scholar
  36. 36.
    Lukashewski, A.J., Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination, Crop Sci., 2000, vol. 40, no. 1, pp. 216–225. doi 10.2135/cropsci2000.401216xCrossRefGoogle Scholar
  37. 37.
    Colas, I., Shaw, P., Prieto, P., Wanous, M., Spielmeyer, W., Mago, R., and Moore, G., Effective chromosome pairing requires chromatin remodeling at the onset of meiosis, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 16, pp. 6075–6080. doi 10.1073/pnas.0801521105CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mago, R., Miah, H., Lawrence, G.J., Wellings, C.R., Spielmeyer, W., Bariana, H.S., McIntosh, R.A., Pryor, A.J., and Ellis, J.G., High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1, Theor. Appl. Genet., 2005, vol. 112, no. 1, pp. 41–50. doi 10.1007/s00122-005-0098-9CrossRefPubMedGoogle Scholar
  39. 39.
    Hsam, S.L.K., Mohler, V., Hartl, L., Wenzel, G., and Zeller, F.J., Mapping of powdery mildew and leaf rust resistance genes on the wheat–rye translocated chromosome T1BL.1RS using molecular and biochemical markers, Plant Breed., 2000, vol. 119, no. 1, pp. 87–89. doi.org/10.1046/j.1439-0523.2000.00444.xGoogle Scholar
  40. 40.
    Mago, R., Spielmeyer, W., Lawrence, J., Lagudah, S., Ellis, G., and Pryor, A., Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat–rye translocation lines, Theor. Appl. Genet., 2002, vol. 104, no. 17, pp. 1317–1324. doi 10.1007/s00122-002-0879-3CrossRefPubMedGoogle Scholar
  41. 41.
    Liu, S., Rudd, J.C., Bai, G., Haley, S.D., Ibrahim, A.M.H., Xue, Q., Hays, D.B., Graybosch, R.A., Devkota, R.N., and Amand, P.St., Molecular markers linked to important genes in hard winter wheat, Crop Sci., 2014, vol. 54, pp. 1304–1321. doi 10.2135/cropsci2013.08.0564CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Plant Protection of the National Academy of Agrarian SciencesKyivUkraine
  2. 2.Institute of Food Biotechnology and Genomics of the National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations