Advertisement

Cytology and Genetics

, Volume 52, Issue 6, pp 428–439 | Cite as

Motif-Based Prediction of Plant Tubulin Phosphorylation Sites Associated with Calcium-Dependent Protein Kinases in Arabidopsis thaliana

  • P. A. KarpovEmail author
  • D. O. NovozhylovEmail author
  • S. V. IsayenkovEmail author
  • Ya. B. BlumeEmail author
Article
  • 14 Downloads

Abstract

New motifs for phosphorylation sites associated with calcium-dependent protein kinases were developed using 494 sites experimentally proved in mammalians. Subsequent motif-based search revealed consensus regions in α-, β-, and γ-tubulin from Arabidopsis thaliana. The analysis of selected candidate sites and comparison of sequences and structures of homological mammalian and plant protein kinases were performed. Bioinformatic analysis reveals Arabidopsis protein kinases CPK20 (At2g38910), CPK21 (AT4G04720), and GRIK2 (At5g60550) as probable contributors of the plant tubulin code.

Keywords:

calcium-dependent protein kinases phosphorylation phosphorylation sites tubulin Arabidopsis thaliana 

REFERENCES

  1. 1.
    Wloga, D. and Gaertig, J., Post-translational modifications of microtubules, J. Cell Sci., 2010, vol. 123, no. 20, pp. 3447–3455. doi 10.1242/jcs.063727CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Blume, Ya., Yemets, A., Sulimenko, V., Sulimenko, T., Chan, J., Lloyd, C., and Draber, P., Tyrosine phosphorylation of plant tubulin, Planta, 2008, vol. 229, no. 1, pp. 143–150. doi 10.1007/s00425-008-0816-zCrossRefPubMedGoogle Scholar
  3. 3.
    Fisher, D., Gilroy, S., and Cyr, R., Evidence for opposing effects of calmodulin on cortical microtubules, Plant Physiol., 1996, vol. 112, no. 3, pp. 1079–1087.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Karpov, P.A., Nadezhdina, E.S., Yemets, A.I., Matusov, V.G., Nyporko, A.Yu., Shashina, N.Yu., and Blume, Ya.B., Bioinformatic search of plant microtubule- and cell cycle related serine-threonine protein kinases, BMC Genomics, 2010, vol. 11, suppl. 1, p. S14. doi 10.1186/1471-2164-11-S1-S14CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Karpov, P.A., Nadezhdina, E.S., Yemets, A.I., and Blume, Ya.B., Results of the clusterization of human microtubule and cel-cycle related serine/threonine protein kinases and their plant homologues, Moscow Univ. Biol. Sci. Bull., 2010, vol. 65, no. 4, pp. 213–216. doi 10.3103/S0096392510040267CrossRefGoogle Scholar
  6. 6.
    Goodman, D.B., Rasmussen, H., DiBella, F., and Guthrow, C.E., Cyclic adenosine 3':5'-monophosphate-stimulated phosphorylation of isolated neurotubule subunits, Proc. Natl. Acad. Sci. U. S. A., 1970, vol. 67, no. 2, pp. 652–659.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Eipper, B.A., Rat brain microtubule protein: purification and determination of covalently bound phosphate and carbohydrate, Proc. Natl. Acad. Sci. U. S. A., 1972, vol. 69, no. 8, pp. 2283–2287.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Alvarado-Kristensson, M., Rodriguez, M.J., Silio, V., Valpuesta, J.M., and Carrera, A.C., SADB phosphorylation of gamma-tubulin regulates centrosome duplication, Nat. Cell Biol., 2009, vol. 11, pp. 1081–1092. doi doi 10.1038/ncb1921CrossRefPubMedGoogle Scholar
  9. 9.
    McKenney, K.M., McKenney, R.J., Huang, H.H., Li, T., Meltzer, S., Jan, L.Y., Vale, R.D., Wiita, A.P., and Jan, Y.N., Phosphorylation of β-tubulin by the down syndrome kinase, minibrain/DYRK1a, regulates microtubule dynamics and dendrite morphogenesis, Neuron, 2016, vol. 90, no. 3, pp. 551–563. doi 10.1016/j.neuron.2016.03.027CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Boscán, B.E., Uzcanga, G.L., Calabokis, M., Camargo, R., Aponte, F., and Bubis, J., Interaction of tubulin and protein kinase CK2 in Trypanosoma equiperdum, Z. Naturforsch. C, 2017, vol. 72, nos. 11–12, pp. 459–4565. doi 10.1515/znc-2017-0019Google Scholar
  11. 11.
    Goldenring, J.R., Gonzalez, B., McGuire, J.S., Jr., and DeLorenzo, R.J., Purification and characterization of a calmodulin-dependent kinase from rat brain cytosol able to phosphorylate tubulin and microtubule-associated proteins, J. Biol. Chem., 1983, vol. 258, no. 20, pp. 12632–12640.PubMedGoogle Scholar
  12. 12.
    Karpov, P.A., Yemets, A.I., Matusov, V.G., Nyporko, A.Yu., Nadezhdina, E.S., and Blume, Ya.B., Bioinformatic search for plant homologs of Ste20-like serine/threonine protein kinases, Cytol. Genet., 2009, vol. 43, no. 6, pp. 68–77.Google Scholar
  13. 13.
    Karpov, P., Raevsky, A., Korablyov, M., and Blume, Ya., Identification of plant homologues of dual specificity Yak1-related kinases, Comput. Biol. J., 2014. doi 10.1155/2014/909268Google Scholar
  14. 14.
    Bryantseva, S.A., Gavryushina, E.S., Yemets, A.I., Karpov, P.A., Blume, Ya.B., Drygin, Yu.F., and Nadezhdina, E.S., MAST2-like protein kinase from grape Vitis vinifera: cloning of catalytic domain cDNA, Cytol. Genet., 2010, vol. 44, no. 4, pp. 227–232. doi 10.3103/S0095452710040079CrossRefGoogle Scholar
  15. 15.
    Chudinova, E.M., Karpov, P.A., Fokin, A.I., Yemets, A.I., Lytvyn, D.I., Nadezhdina, E.S., and Blume, Y.B., MAST-like protein kinase IREH1 from Arabidopsis thaliana co-localizes with the centrosome when expressed in animal cells, Planta, 2017, vol. 246, no. 5, pp. 959–969. doi 10.1007/s00425-017-2742-4CrossRefPubMedGoogle Scholar
  16. 16.
    Sheremet, Ya.A., Yemets, A.I., Vissenberg, K., Verbelen, J.P., and Blume, Ya.B., Effects of inhibitors of serine/threonine protein kinases on Arabidopsis thaliana root morphology and microtubule organization in its cells, Cell Tissue Biol., 2010, vol. 4, no. 4, pp. 399–409. doi 10.1134/S1990519X10040139CrossRefGoogle Scholar
  17. 17.
    Blume, Ya.B., Lloyd, C.W., and Yemets, A.I., Plant tubulin phosphorylation and its role in cell cycle progression, in The Plant Cytoskeleton: A Key Tool for Agro-Biotechnology, 2008, pp. 145–59. doi 10.1007/978-1-4020-8843-8_7Google Scholar
  18. 18.
    Sathyanarayanan, P. and Poovaiah, B., Decoding Ca2+ signals in plants, Crit. Rev. Plant Sci., 2004, vol. 23, no. 1, pp. 1–11. org/ doi 10.1080/07352680490273310Google Scholar
  19. 19.
    Harmon, A.C., Calcium-regulated protein kinases of plants, Gravitat. Space Biol. Bull., 2003, vol. 16, no. 2, pp. 83–90.Google Scholar
  20. 20.
    Hrabak, E.M., Chan, C.W., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N., Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R., Thomas, M., Walker-Simmons, K., Zhu, J.K., and Harmon, A.C., The Arabidopsis CDPK-SnRK superfamily of protein kinases, Plant Physiol., 2003, vol. 132, no. 2, pp. 666–680. doi 10.1104/pp.102.011999CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Novozhylov, D.O., Karpov, P.A., and Blume, Ya.B., Bioinformatic search for Ca2+- and calmodulin-dependent protein kinases potentially associated with the regulation of plant cytoskeleton, Cytol. Genet., 2017, vol. 51, no. 4, pp. 239–246. doi 10.3103/S0095452717040053CrossRefGoogle Scholar
  22. 22.
    Baratier, J., Peris, L., Brocard, J., Gory-Faure, S., Dufour, F., Bosc, C., Fourest-Lieuvin, A., Blanchoin, L., Salin, P., Job, D., and Andrieux, A., Phosphorylation of microtubule-associated protein STOP by calmodulin kinase II, J. Biol. Chem., 2006, vol. 281, no. 28, pp. 19561–19569. doi 10.1074/jbc.m509602200CrossRefPubMedGoogle Scholar
  23. 23.
    Wandosell, F., Serrano, L., Hernandez, M.A., and Avila, J., Phosphorylation of tubulin by a calmodulin-dependent protein kinase, J. Biol. Chem., 1986, vol. 261, no. 22, pp. 10332–10339.PubMedGoogle Scholar
  24. 24.
    Holmfeldt, P., Zhang, X., Stenmark, S., Walczak, C.E., and Gullberg, M., CaMKIIgamma-mediated inactivation of the Kin I kinesin MCAK is essential for bipolar spindle formation, EMBO J., 2005, vol. 24, no. 6, pp. 1255–1266. doi 10.1038/sj.emboj.7600601CrossRefGoogle Scholar
  25. 25.
    Hoffman, L., Farley, M.M., and Waxham, M.N., Calcium-calmodulin-dependent protein kinase II isoforms differentially impact the dynamics and structure of the actin cytoskeleton, Biochemistry, 2013, vol. 52, no. 7, pp. 1198–1207. doi 10.1021/bi3016586CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhao, J.W., Gao, Z.L., Ji, Q.Y., Wang, H., Zhang, H.Y., Yang, Y.D., Xing, F.J., Meng, L.J., and Wang, Y., Regulation of cofilin activity by CaMKII and calcineurin, Am. J. Med. Sci., 2012, vol. 344, no. 6, pp. 462–72. doi 10.1097/MAJ.0b013e318244745bCrossRefPubMedGoogle Scholar
  27. 27.
    Easley, C.A., Faison, M.O., Kirsch, T.L., Lee, J.A., Seward, M.E., and Tombes, R.M., Laminin ctivates CaMK-II to stabilize nascent embryonic axons, Brain Res., 2006, vol. 1092, no. 1, pp. 59–68. doi 10.1016/ j.brainres.2006.03.099CrossRefPubMedGoogle Scholar
  28. 28.
    The UniProt Consortium UniProt: the universal protein knowledgebase, Nucleic Acids Res., 2018, vol. 46, no. 5, p. 2699. org/ doi 10.1093/nar/gky092Google Scholar
  29. 29.
    Lee, M.M., Chan, M.K., and Bundschuh, R., SIBBLAST: a web server for improved delineation of true and false positives in PSI-BLAST searches, Nucleic Acids Res., 2009, vol. 37, nos. 1–2, pp. W53–W56. doi 10.1093/nar/gkp301CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Korf, I., Yandell, M., and Bedell, J., BLAST, Sebastopol: O’Reilly and Associates, Inc., 2003.Google Scholar
  31. 31.
    Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G., and Clustal, W., Clustal X., version 2.0, Bioinformatics, 2007, vol. 23, no. 21, pp. 2947–2948. doi 10.1093/bioinformatics/btm404CrossRefPubMedGoogle Scholar
  32. 32.
    Hornbeck, P.V., Zhang, B., Murray, B., Kornhauser, J.M., Latham, V., and Skrzypek, E., PhosphoSitePlus, 2014: mutations, PTMs and recalibrations, Nucleic Acids Res., 2014, vol. 43, pp. D512–D520. doi 10.1093/nar/gku1267CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Crooks, G.E., Hon, G., Chandonia, J.M., and Brenner, S.E., WebLogo: A sequence logo generator, Genome Res., 2004, vol. 14, no. 6, pp. 1188–1190. doi 10.1101/gr.849004CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sigrist, C.J.A., de Castro, E., Cerutti, L., Cuche, B.A., Hulo, N., Bridge, A., Bougueleret, L., and Xenarios, I., New and continuing developments at PROSITE, Nucleic Acids Res., 2013, vol. 41, pp. D344–D347. doi 10.1093/nar/gks1067CrossRefPubMedGoogle Scholar
  35. 35.
    Atteson, K., The performance of neighbor-joining algorithms of phylogeny reconstruction, Lecture Notes Comp. Sci., 1997, vol. 1276, pp. 101–110.CrossRefGoogle Scholar
  36. 36.
    Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, no. 7, pp. 1870–1874. doi 10.1093/molbev/msw054CrossRefPubMedGoogle Scholar
  37. 37.
    Letunic, I., Doerks, T., and Bork, P., SMART: recent updates, new developments and status in 2015, Nucleic Acids Res., 2015, vol. 43, pp. D257–D60. doi 10.1093/nar/gku949CrossRefPubMedGoogle Scholar
  38. 38.
    Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., Potter, S.C., Punta, M., Qureshi, M., Sangrador-Vegas, A., Salazar, G.A., Tate, J., and Bateman, A., The Pfam protein families database: towards a more sustainable future, Nucleic Acids Res., 2016, vol. 44, no. D1, pp. D279–D285. doi 10.1093/nar/gkv1344CrossRefPubMedGoogle Scholar
  39. 39.
    DeCastro, E., Sigrist, C.J.A., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P.S., Gasteiger, E., Bairoch, A., and Hulo, N., ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins, Nucleic Acids Res., 2006, vol. 34, pp. W362–W365. doi 10.1093/nar/gkl124CrossRefGoogle Scholar
  40. 40.
    Finn, R.D., Attwood, T.K., Babbitt, P.C., Bateman, A., Bork, P., Bridge, A.J., Chang, H.Y., Dosztnyi, Z., El-Gebali, S., Fraser, M., Gough, J., Haft, D., Holliday, G.L., Huang, H., Huang, X., Letunic, I., Lopez, R., Lu, S., Marchler-Bauer, A., Mi, H., Mistry, J., Natale, D.A., Necci, M., Nuka, G., Orengo, C.A., Park, Y., Pesseat, S., Piovesan, D., Potter, S.C., Rawlings, N.D., Redaschi, N., Richardson, L., Rivoire, C., Sangrador-Vegas, A., Sigrist, C., Sillitoe, I., Smithers, B., Squizzato, S., Sutton, G., Thanki, N., Thomas, P.D., Tosatto, S.C., Wu, C.H., Xenarios, I., Yeh, L.S., Young, S.Y., and Mitchell, A.L., InterPro in 2017-beyond protein family and domain annotations, Nucleic Acids Res., 2017, vol. 45, no. D1, pp. D190–D199. doi 10.1093/nar/gkw1107CrossRefPubMedGoogle Scholar
  41. 41.
    Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., and Zhang, Y., The I-TASSER Suite: protein structure and function prediction, Nature Meth., 2015, vol. 12, no. 1, pp. 7–8. doi 10.1038/nmeth.3213CrossRefGoogle Scholar
  42. 42.
    Lee, J.-Y., Yoo, B.-C., and Harmon, A.C., Kinetic and calcium-binding properties of three calcium-dependent protein kinase isoenzymes from soybean, Biochemistry, 1998, vol. 37, no. 19, pp. 6801–6809. doi 10.1021/bi980062qCrossRefPubMedGoogle Scholar
  43. 43.
    Bachmann, M., Shiraishi, N., Campbell, W.H., Yoo, B.-C., Harmon, A.C., and Huber, S.C., Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase, Plant Cell., 1996, vol. 8, no. 3, pp. 505–517. doi 10.1105/tpc.8.3.505CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Huang, J.-Z., Hardin, S.C., and Huber, S.C., Identification of a novel phosphorylation motif for CDPKs: phosphorylation of synthetic peptides lacking basic residues at P-3/P-4, Arch. Biochem. Biophys., 2001, vol. 393, no. 1, pp. 61–66. doi 10.1006/abbi.2001.2476CrossRefPubMedGoogle Scholar
  45. 45.
    Sebastia, C.H., Hardin, S.C., Clouse, S.D., Kieber, J.J., and Huber, S.C., Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate, Arch. Biochem. Biophys., 2004, vol. 428, no. 1, pp. 81–91. doi 10.1016/ j.abb.2004.04.025CrossRefGoogle Scholar
  46. 46.
    Harmon, A.C., Gribskov, M., Gubrium, E., and Harper, J.F., The CDPK superfamily of protein kinases, New Phytol., 2001, vol. 151, no. 1, pp. 175–183. org/ doi 10.1046/j.1469-8137.2001.00171.xGoogle Scholar
  47. 47.
    McCurdy, D.W. and Harmon, A.C., Calcium-dependent protein kinase in the green alga Chara, Planta, 1992, vol. 188, no. 1, pp. 54–61. doi 10.1007/BF00198939CrossRefPubMedGoogle Scholar
  48. 48.
    Sugiyama, K., Mori, I.C., Takahashi, K., Muto, S., and Shihira-Ishikawa, I., A calcium-dependent protein kinase functions in wound healing in Ventricaria ventricosa (Chlorophyta), J. Phycol., 2000, vol. 36, pp. 1145–1152. doi 10.1046/j.1529-8817.2000.00050.xCrossRefGoogle Scholar
  49. 49.
    Billker, O., Lourido, S., and Sibley, L.D., Calcium-dependent signaling and kinases in Apicomplexan parasites, Cell Host Microbe, 2009, vol. 5, no. 6, pp. 612–622. doi 10.1016/j.chom.2009.05.017CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fantino, E., Segretin, M.E., Santin, F., Mirkin, F.G., and Ulloa, R.M., Analysis of the potato calciumdependent protein kinase family and characterization of StCDPK7, a member induced upon infection with Phytophthora infestans, Plant Cell Rep., 2017, vol. 36, no. 7, pp. 1137–1157. doi 10.1007/s00299-017-2144-xCrossRefPubMedGoogle Scholar
  51. 51.
    Valmonte, G.R., Arthur, K., and Higgins, C.M., MacDiarmid R.M., Calcium-dependent protein kinases in plants: evolution, expression and function, Plant Cell Physiol., 2014, vol. 55, no. 3, pp. 551–569. doi 10.1093/pcp/pct200CrossRefPubMedGoogle Scholar
  52. 52.
    Ren, R., Sun, Y., Zhao, Y., Geiser, D., Ma, H., and Zhou, X., Phylogenetic resolution of deep eukaryotic and fungal relationships using highly conserved low-copy nuclear genes, Genome Biol. Evol., 2016, vol. 8, no. 9, pp. 2683–2701. doi 10.1093/gbe/evw196CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hey, S.J., Mayerhofer, H., Halford, N.G., and Dickinson, J.R., DNA sequences from Arabidopsis, which encode protein kinases and function as upstream regulators of Snf1 in yeast, J. Biol. Chem., 2007, vol. 282, pp. 10472–10479. doi 10.1074/jbc.M611244200CrossRefPubMedGoogle Scholar
  54. 54.
    Shen, W., Reyes, M., and Hanley-Bowdoin, L., Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop, Plant Physiol., 2009, vol. 150, no. 2, pp. 996–1005. doi 10.1104/pp.108.132787CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Crozet, P., Jammes, F., Valot, B., Ambard-Bretteville, F., Nessler, S., Hodges, M., Vidal, J., and Thomas, M., Cross-phosphorylation between Arabidopsis thaliana sucrose nonfermenting 1-related protein kinase 1 (AtSnRK1) and its activating kinase (AtSnAK) determines their catalytic activities, J. Biol. Chem., 2010, vol. 285, no. 16, pp. 12071–12077. doi 10.1074/ jbc.M109.079194CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Karpov, P.A., Raevsky, A.V., Krasnoperova, E.E., Isayenkov, S.V., Yemets, A.I., and Blume, Ya.B., Protein kinase KIN10 from Arabidopsis thaliana as a potential regulator of primary microtubule nucleation centers in plants, Cytol. Genet., 2017, vol. 51, no. 6, pp. 415–421. doi 10.3103/S0095452717060056CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Food Biotechnology and Genomics, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations