Advertisement

Cytology and Genetics

, Volume 52, Issue 6, pp 467–477 | Cite as

Assessment of the Utility of TRAP and EST-SSRs Markers for Genetic Diversity Analysis of Sugarcane Genotypes

  • Forough Jomeh Farsangi
  • Avinash S. Thorat
  • Rachayya M. DevarumathEmail author
Article
  • 18 Downloads

Abstract

The TRAP and EST-SSRs technique were utilized for assessing the genetic diversity of 55 sugarcane genotypes (28 wildtypes and 27 cultivars). The total number of polymorphic bands amplified by TRAP primers ranged from 7 to 11 with an average of 9 amplified by SuSy + Arb2, SAI + Arb1, PPDK + Arb3 and PPDK+Arb2. The polymorphism was found to be high (≥50%), ranging from 78 to 100% with an average of 87% for all the markers. Polymorphic Information content (PIC) value ranged from 0.11 (SuSy+Arb2) to 0.44 (SuSy + Arb3) primers with an average of 0.27. Also, the highest resolving power (Rp) was found 6.9 in (SAI + Arb1) between nine primers. A total 15 sets of EST-SSRs primers were used for PCR amplification, 179 amplified fragments is produced which 174 were polymorphic. The total numbers of polymorphic alleles amplified by the various EST-SSRs markers were ranged from 5 (ESSR07 and ESSR10) to 22 (ESSR09), with an average of 13.5 alleles. The polymorphism was found to be high (≥50%), ranging from 83.33 to 100% with an average of 97.2% for all the markers Polymorphic Information content (PIC) value ranged from 0.29 (ESSR15) to 0.83 (ESSR04) primers with an average of 0.56. Also, the highest resolving power (Rp) was found in 8.55 ESSR05 between 15 primers. For the TRAP nine combination primers was used for the work. A total 85 amplified fragments were produced which 74 (85%) were polymorphic. In cooperation of both the markers, dendrogram was constructed using UPGMA method from the present study. Hence, the TRAP and EST-SSRs techniques jointly helped to identify the genetic diversity of sugarcane clones/varieties which could be used in breeding program for sugarcane improvement.

Keywords:

sugarcane genetic diversity molecular assisted selection PIC TRAP EST-SSRs 

Notes

ACKNOWLEDGMENTS

The authors are grateful to the Director General, Vasantdada Sugar Institute (VSI), Pune for their constant support, encouragement and providing infrastructure facilities during research work and also thankful to Plant Breeding section, VSI for providing sugarcane leaf samples.

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

REFERENCES

  1. 1.
    Singh, R.K., Singh, R.B., Singh, S.P., and Sharma, M.L., Identification of sugarcane microsatellites associated to sugar content in sugarcane and transferability to other cereal genomes, Euphytica, 2011, vol. 182, pp. 335–354.CrossRefGoogle Scholar
  2. 2.
    Roach, B.T., Nobilisation of sugarcane, Proc. Int. Soc. Sugar Cane Technot., 1972, vol. 14, pp. 206–216.Google Scholar
  3. 3.
    Daniels, J. and Roach, B.T., Taxonomy and evolution, in Sugarcane Improvement through Breeding, Heinz, D.J., Ed., Amsterdam: Elsevier Press, 1987, pp. 7–84.Google Scholar
  4. 4.
    Devarumath, R.M., Kalwade, S.B., Bundock, P., Eliott, F.G., and Henry, R., Target region amplification polymorphism (TRAP) and single nucleotide polymorphism (SNP) marker utility in genetic evaluation of sugarcane genotypes, Plant Breed., 2013, vol. 132, pp. 736–747.CrossRefGoogle Scholar
  5. 5.
    Parida, S.K., Pandit, A., Gaikwad, K., Sharma, T.R., Srivastava, P.S., Singh, N.K., and Mohapatra, T., Functionally relevant microsatellites in sugarcane unigenes, BMC Plant Biol., 2010, vol. 10, p. 251. doi 10.1186/1471-2229-10-251CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., and Rafalski, A., The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis, Mol. Breed., 1996, vol. 2, pp. 225–238.CrossRefGoogle Scholar
  7. 7.
    Selvi, A., Nair, N.V., Noyer, J.L., Singh, N.K., Balasundaram, N., Bansal, K.C., Koundal, K.R., and Mohapatra, T., Genomic constitution and genetic relationship among the tropical and subtropical Indian sugarcane cultivars revealed by AFLP, Crop Sci., 2005, vol. 45, pp. 1750–1757.CrossRefGoogle Scholar
  8. 8.
    Kawar, P.G., Devarumath, R.M., and Nerkar, Y., Use of RAPD markers for assessment of genetic diversity in sugarcane cultivars. Indian J. Biotechnol., 2009, vol. 8, pp. 67–71.Google Scholar
  9. 9.
    Oliveira, K.M., Pinto, L.R., Marconi, T.G., Margarido, G.R.A., Pastina, M.M., Teixeira, L.H.M., Figueira, A.M., Ulian, E.C., Garcia, A.A.F., and Souza, A.P., Functional genetic linkage map on EST markers for a sugarcane (Saccharum spp.) commercial cross, Mol. Breed., 2007, vol. 20, pp. 189–208.CrossRefGoogle Scholar
  10. 10.
    Maccheroni, W., Jordao, H., De Gaspari, R., De Moura, G.L., and Matsuoka, S., Development of a dependable microsatellite-based fingerprinting system for sugarcane, Sugar Cane Int., 2009, vol. 27, pp. 47–52.Google Scholar
  11. 11.
    Kalwade, S.B. and Devarumath, R.M., Single strand conformation polymorphism of genomic and EST-SSRs marker and its utility in genetic evaluation of sugarcane, Physiol. Mol. Biol. Plants, 2014, vol. 20, pp. 313–321.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Devarumath, R.M., Kalwade, S.B., Kawar, P.G., and Sushir, K.V., Assessment of genetic diversity in sugarcane germplasm using ISSR and SSR markers, Sugar Tec., 2012, vol. 14, pp. 334–344.CrossRefGoogle Scholar
  13. 13.
    Kalwade, S.B., Devarumath, R.M., Kawar, P.G., and Sushir, K.V., Genetic profiling of sugar-cane genotypes using inter simple sequence repeat (ISSR) markers, Electron. J. Plant Breed., 2012, vol. 3, pp. 621–628.Google Scholar
  14. 14.
    Singh, R.K., Singh, P., Mishra, P., and Singh, S.P., STMS markers for tagging high sugar gene in sugarcane, Sugar Tech., 2005, vol. 7, pp. 74–76.CrossRefGoogle Scholar
  15. 15.
    Devarumath, R.M., Kalwade, S.B., Bundock, P., Elliott, F.G., and Henry, R., Independent target region amplification polymorphism and single-nucleotide polymorphism marker utility in genetic evaluation of sugarcane genotypes, Plant Breed., 2013, vol. 132, pp. 736–747. doi.org/10.1111/pbr.12092Google Scholar
  16. 16.
    Pan, Y.B., Burner, D.M., and Legendre, B.L., An assessment of the phylogenetic relationship among sugarcane and related taxa based on the nucleotide sequence of 5S rRNA intergenic spacers, Genetica, 2000, vol. 108, pp. 285–295.CrossRefPubMedGoogle Scholar
  17. 17.
    Parida, S.K., Kalia, S.K., and Kaul, S., Informative genomic microsatellite markers for efficient genotyping applications in sugarcane, Theor. Appl. Genet., 2009, vol. 118, pp. 327–338.CrossRefPubMedGoogle Scholar
  18. 18.
    Singh, R.K., Singh, R.B., Singh, S.P., Mishra, N., Rastogi, J., Sharma, M.L., and Kumar, A., Genetic diversity among the Saccharum spontaneum clones and commercial hybrids through SSR markers., Sugar Tech., 2013, vol. 15, pp. 109–115.CrossRefGoogle Scholar
  19. 19.
    Singh, R.B., Singh, B., and Singh, R.K., Development of microsatellite (SSRs) markers and evaluation of genetic variability within sugarcane commercial varieties (Saccharum spp. hybrids), Int. J. Advanced Res., vol. 3, pp. 700–708.Google Scholar
  20. 20.
    Pan, Y.B., Databasing molecular identities of sugarcane (Saccharum spp.) clones constructed with microsatellite (SSR) DNA markers, Am. J. Plant Sci., 2010, vol. 1, pp. 87–94.CrossRefGoogle Scholar
  21. 21.
    Singh, N.K., Genetic mapping and QTL analysis for sugar yield-related traits in sugarcane, Euphytica, 2013, vol. 191, pp. 333–353.CrossRefGoogle Scholar
  22. 22.
    Powell, W., Morgante, M., McDevitt, R., Vend-ramin, G.G., and Rafalski, J.A., Polymorphic simple sequence repeat regions in chloroplast genomes: Application to population genetics of pines, Natl. Acad. Sci., 1995, vol. 92, pp. 7759–7763.CrossRefGoogle Scholar
  23. 23.
    Hu, J. and Vick, B., Target region amplification, polymorphism: a novel marker technique for plant genotypes, Plant Mol. Biol. Rep., vol. 20, pp. 289–294.Google Scholar
  24. 24.
    Suman, A., Ali, K., Arro, J., Parco, A.S., Kimbeng, C.A., and Baisakh, N., Molecular diversity among members of the Saccharum complex assessed using TRAP markers based on lignin-related genes, Bio. Energy Res., 2012, vol. 5, pp. 197–120.Google Scholar
  25. 25.
    Khan, S.M., Yadava, S., Srivastava, S., Swapna, M., Chandra, A., and Singh, R.K., Development and utilization of conserved-intron scanning marker in sugarcane, Aust. J. Bot., 2011, vol. 59, pp. 38–45.CrossRefGoogle Scholar
  26. 26.
    Andru, S., Pan, Y.B., Thongthawee, S., Burner, D.M., and Kimbeng, C.A., Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. I. Linkage mapping using AFLP, SSR, and TRAP markers, Theor. Appl. Genet., 2011, vol. 123, pp. 77–93. doi 10.1007/s00122-011-1568-xCrossRefPubMedGoogle Scholar
  27. 27.
    Alwala, S., Suman, A., Arro, J.A., Veremis, J.C., and Kimbeng, C.A., Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections, Crop Sci. Soc. Am., 2006a, vol. 46, pp. 448–455.CrossRefGoogle Scholar
  28. 28.
    Alwala, S., Kimbeng, C.A., Gravois, C.A., and Bischoff, K.P., TRAP, a new tool for sugarcane breeding: comparison with AFLP and coefficient of percentage. J. Am. Soc. Sugar Cane Technol., 2006b, vol. 26, pp. 62–87.Google Scholar
  29. 29.
    Da, SilvaJ.A. and Bressiani, J.A., Sucrose synthase molecular marker associated with sugar content in elite sugarcane progeny, Genet. Mol. Biol., 2005, vol. 28, pp. 294–298. doi.org/10.1590/S1415-47572005000200020Google Scholar
  30. 30.
    Aljanabi, S.M., Froget, L., and Dookun, A., An improved and rapid protocol for the isolation of polysaccharide and polyphenol free sugarcane DNA, Plant Mol. Biol. Rep., vol. 17, pp. 1–8.Google Scholar
  31. 31.
    Li, G. and Quiros, C., Sequence related amplification polymorphism a new marker system based on simple PCR reaction, its application to mapping and gene tagging in Brassica, Theor. Appl. Genet., 2001, vol. 103, pp. 455–461.CrossRefGoogle Scholar
  32. 32.
    Sambrook, J., Fritsch, E., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York, USA: Cold Spring Harbor, 1989.Google Scholar
  33. 33.
    Rohlf, F.J., NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, New York: Exeter Software, 2000.Google Scholar
  34. 34.
    Mateescu, R.G., Zhang, Z., Tgai, K., Phavaphutanon, J., Wursten, N.I., Lust, G., Quaa, R., Murphy, K., Acland, G.M., and Todhunter, R.J., Analysis of allele fidelity, polymorphic information content, and density of microsatellites in a genome-wide screening for Hip dysplasia in crossbreed pedigree, J. Heredity, 2005, vol. 96, pp. 847–853.CrossRefGoogle Scholar
  35. 35.
    Prevost, A. and Wilkinson, M.J., A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars, Theor. Appl. Genet., 1999, vol. 98, pp. 107–112.CrossRefGoogle Scholar
  36. 36.
    Filho, J.A.D., Resende, L.V., Bastos, G.Q., Neto, D.E.S., and Machado, P.R., Use of molecular markers RAPD, and ESTs SSR to study genetic variability in sugarcane, Rev. Cienc. Agron., 2013, vol. 44, pp. 141–149. doi.org/ 10.1590/S1806-66902013000100018Google Scholar
  37. 37.
    Creste, S., Sansoli, D.M., Tardiani, A.C.S., Silva, D.N., and Goncalves, F.K., Comparison of AFLP, TRAP and SSRs in the estimation of genetic relationships in sugarcane, Sugar Tech., 2010, vol. 12, pp. 150–154.CrossRefGoogle Scholar
  38. 38.
    Diola, V., Barbosa, M.H.P., and Vegia, C.F.M., Molecular markers EST-SSRs for genotype-phenotype association in sugarcane, Sugar Tech., 2014, vol. 16, pp. 241–249.CrossRefGoogle Scholar
  39. 39.
    Hameed, U., Pan, Y.B., Muhammad, K., Afghan, S., and Iqbal, J., Use of simple sequence repeat markers for DNA fingerprinting and diversity analysis of sugarcane (Saccharum spp.) cultivars resistant and susceptible to red rot, Genet. Mol. Res., 2012, vol. 11, pp. 1195–1204.CrossRefPubMedGoogle Scholar
  40. 40.
    Haq, S.U., Kumar, P., Singh, R.K., Kumar, S.V., Bhatt, B., Sharma, M., Kachhwaha, S., and Kothari, S.L., Assessment of functional EST-SSR markers (sugarcane) in cross-species transferability, genetic diversity among Poaceae plants, and bulk segregation analysis, Genet. Res. Int., 2016, pp. 1–16. doi.org/ 10.1155/2016/7052323Google Scholar
  41. 41.
    Marconi, T.G., Costa, E.A., Miranda, H., Mancini, M.C., Cardoso-Silva, C.B., Oliveira, K.M., Pinto, L.R., Mollinari, M., Garcia, A., and Sousa, A.P., Functional markers for gene mapping and genetic diversity studies in sugarcane, BMC Res. Notes, 2011, vol. 4, p. 264.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Oliveira, K.M., Pinto, L.R., Marconi, T.G., Mollinar, M., Ulian, E.C., Chabregas, S.M., Falco, M.C., Burniquist, W., Garcia, A.A.F., and Souza, A.P., Characterization of new polymorphic functional markers for sugarcane, Genome, 2009, vol. 52, pp. 191–209.CrossRefPubMedGoogle Scholar
  43. 43.
    Liu, P., Que, Y., and Pan, Y-B., Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing, Sugar Tech., 2011, vol. 13, pp. 129–136.CrossRefGoogle Scholar
  44. 44.
    Yang, X., Wei, L., Ying-Ying, L., Wen-Bing, G., and Yin-Bing, B., Applying target region amplification polymorphism markers for analyzing genetic diversity of Lentinula edodes in China, J. Basic Microbiol., 2010, vol. 50, pp. 475–483.CrossRefGoogle Scholar
  45. 45.
    Khan, I.A., Bibi, S., Yasmeen, S., Seema, N., Khatri, A., Siddiqui, M.A., Nizamani, G.S., and Afgan, S., Identification of elite sugarcane clones through TRAP, Pak. J. Bot., 2011, vol. 43, pp. 261–269.Google Scholar
  46. 46.
    Glazmann, J.C., Lu, Y.H., and Lanaud, C., Variation of nuclear ribosomal DNA in sugarcane, J. Genet. Breed, 1990, vol. 44, pp. 191–198.Google Scholar
  47. 47.
    Singh, R.K., Singh, R., Singh, S.P., Mohapatra, T., and Singh, S.B., Molecular diversity among Saccharum species and elite sugarcane varieties based on RAPD and AFLP marers, Proc. Internl. Symp. on Technologies to improve Sugar Productivity in Developing Countries, Guillin, P. R. China, 2006, pp. 646–654.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Forough Jomeh Farsangi
    • 1
    • 2
  • Avinash S. Thorat
    • 2
  • Rachayya M. Devarumath
    • 1
    • 2
    Email author
  1. 1.Department of Biotechnology, Savitribai Phule UniversityPuneIndia
  2. 2.Molecular Biology and Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk)PuneIndia

Personalised recommendations