Advertisement

Cytology and Genetics

, Volume 52, Issue 5, pp 385–393 | Cite as

Variability of the Triticale Genome in Culture in vitro

  • S. V. Pykalo
  • O. V. Dubrovna
Article
  • 15 Downloads

Abstract

The research results of studies on genome variation in triticale, which occurs during in vitro cultivation and is observed at different levels of its organization, are presented in the review. Data on alterations detected in studying the karyotype, nuclear, chloroplast, and mitochondrial DNA sequences of triticale cell cultures and regenerant plants are analyzed.

Keywords:

triticale in vitro culture genomic variation 

Notes

REFERENCES

  1. 1.
    Oettler, G., The fortune of a botanical curiosity—Triticale: past, present and future, J. Agric. Sci., 2005, vol. 143, no. 5, pp. 329–346. doi.org/10.1017/ S0021859605005290Google Scholar
  2. 2.
    Mohammad, F., Ahmad, I.J.A.Z., Khan, N.U., Maqbool., K., and Naz, A.Y.S.H., A., Shaheen S.A.L.M.A., Ali K. Comparative study of morphological traits in wheat and triticale, Pak. J. Bot., 2011, vol. 43, no. 1, pp. 165–170.Google Scholar
  3. 3.
    Kavanagh, V.B., Hall, L.M., and Hall, J.C., Potential hybridization of genetically engineered triticale with wild and weedy relatives in Canada, Crop Sci., 2010, vol. 50, no. 4, pp. 1128–1140. doi 10.2135/cropsci2009.11.0644CrossRefGoogle Scholar
  4. 4.
    Blum, A., The abiotic stress response and adaptation of triticale—a review, Cer. Res. Comm., 2014, vol. 42, no. 3, pp. 359–375. doi.org/10.1556/CRC.42.2014.3.1CrossRefGoogle Scholar
  5. 5.
    Farsi, M., Vanstone, V.A., Fisher, J.M., and Rathjen, A.J., Genetic variation in resistance to Pratylenchus neglectus in wheat and triticales, Aust. J. Exp. Agr., 1995, vol. 35, no. 5, pp. 597–602. doi.org/10.1071/EA9950597Google Scholar
  6. 6.
    Padmaja, G., Reddy, V.D., and Reddy, G.M., Somaclonal variation from regenerants of mature embryo calli of triticale, Indian J. Exp. Biol., 1993, vol. 31, no. 3, pp. 238–241.Google Scholar
  7. 7.
    Jordan, M.C. and Larter, E.N., Somaclonal variation in triticale (Triticosecale Wittmack) cv. Carmen, Can. J. Genet. Cytol., 1985, vol. 27, no. 2, pp. 151–157. doi.org/ 10.1139/g85-023CrossRefGoogle Scholar
  8. 8.
    Ziemienowicz, A., Shim, Y.-S., Matsuoka, A., Eudes, F., and Kovalchuk, I., A novel method of transgene delivery into triticale plants using the Agrobacterium transferred DNA-derived nano-complex, Plant Physiol., 2012, vol. 158, no. 4, pp. 1503–1513. doi.org/10.1104/ pp.111.192856CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Binka, A., Orczyk, W., and Nadolska-Orczyk, A., The Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) and triticale (Triticosecale Wittmack): role of the binary vector system and selection cassettes, J. Appl. Genet., 2012, vol. 53, no. 1, pp. 1–8. doi 10.1007/s13353-011-0064-yCrossRefPubMedGoogle Scholar
  10. 10.
    Kunakh, V.A., Genome variability in the somatic plant cells. 6. Variability and selection in the course of adaptation to in vitro conditions, Biopolym. Cell, 2000, vol. 16, no. 3, pp. 159–185. doi.org/10.7124/bc.000564CrossRefGoogle Scholar
  11. 11.
    Oping, L.S., Xin, H.Y., and Jun, ZhangT., Cytological studies on the fertility and its changes in the embryo-callus-regenerated hybrids between Aegilops tauschii and triticale (6x), Acta Agronomica Sinica, 1997, vol. 23, no. 4, pp. 454–458.Google Scholar
  12. 12.
    Kunakh, V.A., Genome variability of plant somatic cells. 1. Variability during ontogenesis, Biopolym. Cell, 1994, vol. 10, no. 6, pp. 5–35. doi.org/10.7124/bc.0003C0CrossRefGoogle Scholar
  13. 13.
    Kunakh, V.A., Genome variability in plant somatic cells. 5. Growth and mitotic regime variations during adaptation to maintenance in vitro, Biopolym. Cell, 1999, vol. 15, no. 5, pp. 343–359. doi.org/10.7124/ bc.000530CrossRefGoogle Scholar
  14. 14.
    Jain, S.M., Tissue culture-derived variation in crop improvement, Euphytica, 2001, vol. 118, no. 2, pp. 153–166.CrossRefGoogle Scholar
  15. 15.
    Bebeli, P., Karp, A., and Kaltsikes, P.J., Plant regeneration and somaclonal variation from cultured immature embryos of sister lines of rye and triticale differing in their content of heterochromatin. 1. Morphogenetic response, Theor. Appl. Genet., 1988, vol. 75, no. 6, pp. 929–936.Google Scholar
  16. 16.
    Lapitan, N.L.V., Sears, R.G., and Gill, B.S., Amplification of repeated DNA sequences in wheat rye hybrids regenerated from tissue culture, Theor. Appl. Genet., 1988, vol. 75, no. 3, pp. 381–388.CrossRefGoogle Scholar
  17. 17.
    Zimny, J. and Bednarek, P.T., Tissue culture-induced genetic and epigenetic variation in triticale (Triticosecale spp. Wittmack ex A. Camus 1927) regenerants, Plant Mol. Biol., 2015, vol. 89, no. 3, pp. 279–292. doi 10.1007/s11103-015-0368-0CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Weigel, R., Wolf, M., and Hesemann, C.-U., Mitochondrial DNA variation in plants regenerated from embryogenic callus cultures of CMS triticale, Theor. Appl. Genet., 1995, vol. 91, no. 8, pp. 1237–1241.CrossRefPubMedGoogle Scholar
  19. 19.
    Kaltsikes, P.J. and Bebeli, P.J., Somaclonal variation causes changes in the inter-relationships between traits in hexaploid triticale, Japan. J. Breed., 1993, vol. 43, no. 1, pp. 45–51. doi.org/10.1270/jsbbs1951.43.45CrossRefGoogle Scholar
  20. 20.
    Bairu, M.W., Aremu, A.O., and Staden, J.V., Somaclonal variation in plants: causes and detection methods, Plant Growth Regul., 2011, vol. 63, no. 2, pp. 147–173. doi.org/10.1007/s10725-010-9554-xCrossRefGoogle Scholar
  21. 21.
    Bebeli, P.J., Kaltsikes, P.J., and Karp, A., Field evaluation of somaclonal variation in triticale lines differing in telomeric heterochromatin, J. Genet. Breed., 1993, vol. 47, pp. 249–258.Google Scholar
  22. 22.
    Machczyn’ska, J., Orlowska, R., Zimny, J., and Bednarek, P.T., Extended metAFLP approach in studies of tissue culture induced variation (TCIV) in triticale, Mol. Breed., 2014, vol. 34, no. 3, pp. 845–854. doi 10.1007/s11032-014-0079-2CrossRefGoogle Scholar
  23. 23.
    Orlowska, R., Man’kowski, D.R., Zimny, J., and Bednarek, P.T., DNA methylation changes in triticale due to in vitro culture plant regeneration and consecutive reproduction, Plant Cell Tiss. Organ Cult., 2014, vol. 119, no. 2, pp. 289–299. doi 10.1007/s11240-014-0533-1CrossRefGoogle Scholar
  24. 24.
    Dubrovna, I.V. and Bavol., A.V., Variability of the wheat genome during in vitro culture, Cytol. Genet., 2011, vol. 45, no. 5, pp. 333–340.CrossRefGoogle Scholar
  25. 25.
    Soloviev, A.A., Karlov, G.I., Divashuk, M.G., and Bazaleev, N.A., Morphological and cytogenetic characterization of translocated spring triticale line 131/7, Acta Agricult. Serb., 2005, vol. 10, no. 19, pp. 17–23.Google Scholar
  26. 26.
    Armstrong, K.C., Nakamura, C., and Keller, W.A., Karyotype instability in tissue culture regenerants of triticale (Triticosecale Wittmack) cv. “Welsh” from 6-month-old callus cultures, Z. Pflanzenzuchtg., 2013, vol. 91, no. 3, pp. 233–245.Google Scholar
  27. 27.
    Lapitan, N.L.V., Sears, R.G., and Gill, B.S., Translocations and other karyotypic structural changes in wheat rye hybrids regenerated from tissue culture, Theor. Appl. Genet., 1984, vol. 68, no. 6, pp. 547–554.CrossRefPubMedGoogle Scholar
  28. 28.
    Pykalo, S.V., Bavol., A.V., and Dubrovna, O.V., Cytogenetic features of callus cultures of winter triticale under osmotic stress action, Fact. Exp. Evol. Org., 2015, vol. 17, pp. 230–235.Google Scholar
  29. 29.
    Pykalo, S., Clastiche e turbogene effetti cultura man nitolo callo Triticale Inverno, Italian Sci. Rev., 2015, vol. 5, no. 26, pp. 161–164.Google Scholar
  30. 30.
    Fiskesjö, G., The Allium test as a standard in environmental monitoring, Hereditas, 1985, vol. 102, no. 1, pp. 99–112. doi.org/10.1111/j.1601-5223.1985.tb00471.xCrossRefPubMedGoogle Scholar
  31. 31.
    Hammouda, D., Baaziz, N., and Khalfallah, N., Genetic characterization of octoploid (AABBDDRR) and hexaploid (AABBRR) triticales, Eur. Sci. J., 2015, vol. 11, no. 9, pp. 284–296.Google Scholar
  32. 32.
    Dryanova, A. and Dimitrov, B., Influence of the herbicide Stomp 330 on morphogenetic response of triticale callus cultures. Cytological evidences for its mutagenic action, Cytologia, 2000, vol. 65, no. 1, pp. 17–23. doi.org/10.1508/cytologia.65.17CrossRefGoogle Scholar
  33. 33.
    Chen, W.H., Established haploid and diploid embryonic somaclones of allooctoploid triticale, Acta Botanica Sinica, 1989, vol. 29, no. 4, pp. 367–372.Google Scholar
  34. 34.
    Fedak, G., Armstrong, K.C., and Handyside, R., Chromosome irregularities in wheat and triticale plants regenerated from leaf base callus, Plant Breed., 1987, vol. 99, no. 2, pp. 151–154. doi.org/10.1111/j.1439-0523.1987.tb01164.xGoogle Scholar
  35. 35.
    Wang, Yi. and Hu, H., Gamete composition and chromosome variation in pollen-derived plants from octoploid triticale x common wheat hybrids, Theor. Appl. Genet., 1993, vol. 85, nos. 6–7, pp. 681–687.Google Scholar
  36. 36.
    Chugh, A., Amundsen, E., and Eudes, F., Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores, Plant Cell Rep., 2009, vol. 28, no. 5, pp. 801–810. doi 10.1007/s00299-009-0692-4CrossRefPubMedGoogle Scholar
  37. 37.
    Oleszczuk, S., Tyrka, M., and Zimny, J., The origin of clones among androgenic regenerants of hexaploid triticale, Euphytica, 2014, vol. 198, no. 3, pp. 325–336.CrossRefGoogle Scholar
  38. 38.
    Lantos, C., Bona, L., Boda, K., and Pauk, J., Comparative analysis of in vitro anther and isolated microspore culture in hexaploid Triticale (Triticosecale Wittmack) for androgenic parameters, Euphytica, 2014, vol. 197, no. 1, pp. 27–37. doi 10.1007/s10681-013-1031-yCrossRefGoogle Scholar
  39. 39.
    Ferrie, A.M.R. and Caswell, K.L., Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production, Plant Cell Tiss. Organ Cult., 2011, vol. 104, no. 3, pp. 301–309. doi 10.1007/s11240-010-9800-yCrossRefGoogle Scholar
  40. 40.
    Gut, M., Bichoński, A., Mikulski, W., and Bielerzewska, H., Anther culture response in heterozygous triticale (Triticosecale Wittmack) populations, Cer. Res. Comm., 2006, vol. 34, nos. 2–3, pp. 1029–1036.CrossRefGoogle Scholar
  41. 41.
    Oleszczuk, S., Rabiza-Swider, J., Zimny, J., and Lukaszewski, A.J., Aneuploidy among androgenic progeny of hexaploid triticale (Triticosecale Wittmack), Plant Cell Rep., 2011, vol. 30, no. 4, pp. 575–586.CrossRefPubMedGoogle Scholar
  42. 42.
    Dubas, E., Wędzony, M., Petrovska, B., and Salaj, J., Źur I. Cell structural reorganization during induction of androgenesis in isolated microspore cultures of Triticale (Triticosecale Wittm.), Acta Biol. Cracov., Ser. Bot., 2010, vol. 52, no. 1, pp. 73–86.Google Scholar
  43. 43.
    Pykalo, S.V., Dubrovna, O.V., and Bavol., A.V., Cytological analysis of resistant to osmotic stress callus cultures of triticale and regenerants from them, Plant Physiol. Genet., 2015, vol. 47, no. 5, pp. 430–439.Google Scholar
  44. 44.
    Reddy, V.D. and Reddy, G.M., Molecular analysis of somaclonal variation in triticale, As. J. Mol. Biol. Biotechnol., 1996, vol. 4, no. 4, pp. 260–262.Google Scholar
  45. 45.
    Kaçar, Y.A., Byrne, P.F., and Teixeira, D.S.J., Molecular markers in plant tissue culture, in Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues, London: Global Science Books, 2006, vol. 2, pp. 444–449.Google Scholar
  46. 46.
    Leroy, X.J., Leon, K., Hily, J.M., Chaumeil, P., and Branchard, M., Detection of in vitro culture-induced instability through inter-simple sequence repeat analysis, Theor. Appl. Genet., 2001, vol. 102, nos. 6–7, pp. 885–891.CrossRefGoogle Scholar
  47. 47.
    Atak, M., Parmaksiz, I., Ozcan, S., and Ciftci, C.Y., Characterization of triticale genotypes by RAPD analysis, Korean J. Genet., 2005, vol. 27, no. 4, pp. 375–381.Google Scholar
  48. 48.
    Emel, S., Evaluation of ISSR markers to assess genetic variability and relationship among winter triticale (Triticosecale Wittmack) cultivars, Pak. J. Bot., 2010, vol. 42, no. 4, pp. 2755–2763.Google Scholar
  49. 49.
    Tyrka, M., Bednarek, P.T., Kilian, A., Wedzony, M., Hura, T., and Bauer, E., Genetic map of triticale compiling DarT, SSR, and AFLP markers, Genome, 2011, vol. 54, no. 5, pp. 391–401. doi 10.1139/g11-009CrossRefPubMedGoogle Scholar
  50. 50.
    Kuleung, C., Baenziger, P.S., Kachman, S.D., and Dweikat, I., Evaluating the genetic diversity of triticale with wheat and rye SSR markers, Crop Sci., 2006, vol. 46, no. 4, pp. 1692–1700. doi 10.2135/cropsci2005.09-0338CrossRefGoogle Scholar
  51. 51.
    Tonk, A., Tosun, M., and Ilker, E., Evaluation and comparison of ISSR and RAPD markers for assessment of genetic diversity in triticale genotypes, Bulg. J. Agric. Sci., 2014, vol. 20, no. 6, pp. 1413–1420.Google Scholar
  52. 52.
    Trebichalsky, A., Balázová, Z., Gálová, Z., Chnapek, M., and Tomka, M., Detection of genetic diversity of triticale by microsatellite markers, J. Microbiol. Biotech. Food Sci., 2013, vol. 2, no. 1, pp. 1898–1906.Google Scholar
  53. 53.
    Jordan, M.C., Somaclonal variation in triticale, in biotechnology in agriculture and forestry, in Wheat, Berlin: Springer-Verlag, 1990, vol. 13, pp. 511–525.Google Scholar
  54. 54.
    Miguel, C. and Marum, L., An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond, J. Exp. Bot., 2011, vol. 62, no. 11, pp. 3713–3725. doi 10.1093/jxb/err155CrossRefPubMedGoogle Scholar
  55. 55.
    Zhou, J., Yang, Z., Feng, J., Zhang, X., Li, G., and Ren, Z., Morphological, cytogenetic and molecular identification of a new triticale, Cer. Res. Comm., 2007, vol. 35, no. 3, pp. 1385–1395.CrossRefGoogle Scholar
  56. 56.
    Reddy, V.D. and Reddy, G.M., In vitro seed formation and somaclonal variation in hexaploid triticale, Genetica Agraria, 1988, vol. 42, pp. 151–160.Google Scholar
  57. 57.
    Kupriyanova, N.S., Conservativity and variability of ribosomal DNA in eukaryotes, Mol. Biol., 2000, vol. 34, no. 5, pp. 637–647.CrossRefGoogle Scholar
  58. 58.
    Anil, V.S., Lobo, S., and Bennur, S., Somaclonal variations for crop improvement: Selection for disease resistant variants in vitro, Plant Sci. Today, 2018, vol. 5, no. 2, pp. 44–54. doi.org/10.14719/pst.2018.5.2.382CrossRefGoogle Scholar
  59. 59.
    Brettell, R.I.S., Pallotta, M.A., Gustafson, J.P., and Appels, R., Variation at the Nor loci in triticale derived from tissue culture, Theor. Appl. Genet., 1986, vol. 71, no. 4, pp. 637–643.CrossRefPubMedGoogle Scholar
  60. 60.
    Sadoch, Z., Majewska-Sawka, A., Jazdzewska, E., and Niklas, A., Changes in sugar beet mitochondrial DNA induced during callus stage, Plant Breed., 2000, vol. 119, no. 2, pp. 107–110. doi.org/10.1046/j.1439-0523.2000.00460.xCrossRefGoogle Scholar
  61. 61.
    Khotyleva, L.V., Matveenko, S.N., Ruban, V.V., and Kaminskaya, L.N., Features of the structure of cytoplasmic organelles in callus cells and regenerants of heterotic triticale hybrids, Cytol. Genet., 1995, vol. 29, no. 1, pp. 23–28.Google Scholar
  62. 62.
    Schmidt, M.C., Walz, C., and Hesemann, C.-U., Somaclonal variation of the mitochondrial ATPase subunit 6 gene region in regenerated triticale shoots and full-grown plants, Theor. Appl. Genet., 1996, vol. 93, no. 3, pp. 355–360.CrossRefPubMedGoogle Scholar
  63. 63.
    Pauk, J., Puolimatka, M., Lokos, K., and Monostori, T., In vitro androgenesis of triticale in isolated microspore culture, Plant Cell Tiss. Organ Cult., 2000, vol. 61, no. 3, pp. 221–229.CrossRefGoogle Scholar
  64. 64.
    McClintock, B., The significance of responses of the genome to challenge, Science, 1984, vol. 226, no. 4676, pp. 792–801.CrossRefPubMedGoogle Scholar
  65. 65.
    Cheresiz, S.V., Yurchenko, N.N., Ivannikov, A.V., and Zakharov, I.K., Transposable elements and stress, Vavilov J. Genet. Breed., 2008, vol. 12, nos. 1–2, pp. 216–241.Google Scholar
  66. 66.
    Kunakh, V.A., Genome plasticity of somatic cells and plant adaptability, Mol. Appl. Genet., 2011, vol. 12, pp. 7–14.Google Scholar
  67. 67.
    Kalendar, R., Flavell, A.J., Ellis, T.H.N., Sjakste, T., Moisy, C., and Schulman, A.H., Analysis of plant diversity with retrotransposon-based molecular markers, Heredity, 2011, vol. 106, no. 4, pp. 520–530. doi 10.1038/hdy.2010.93CrossRefPubMedGoogle Scholar
  68. 68.
    Bayram, E., Yilmaz, S., Hamat-Mecbur, H., Kartal-Alacam, G., and Gozukirmizi, N., Nikita retrotransposon movements in callus cultures of barley (Hordeum vulgare L.), Plant Omics J., 2012, vol. 5, no. 3, pp. 211–215.Google Scholar
  69. 69.
    Peschke, V.M., Phillips, R., and Gengenback, B.G., Discovery of transposable element activity among progeny of tissue culture derived maize plants, Science, 1987, vol. 238, no. 4828, pp. 804–807. doi 10.1126/science.238.4828.804CrossRefPubMedGoogle Scholar
  70. 70.
    Mhiri, C., Morel, J.-B., Vernhettes, S., Casacuberta, J.M., Lucas, H., and Grandbastien, M.A., The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress, Plant Mol. Biol., 1997, vol. 33, no. 2, pp. 257–266.CrossRefPubMedGoogle Scholar
  71. 71.
    Zou, J., Gong, H., Yang, T.-J., and Meng, J., Retrotransposons—a major driving force in plant genome evolution and a useful tool for genome analysis, J. Crop Sci. Biotech., 2009, vol. 12, no. 1, pp. 1–8.CrossRefGoogle Scholar
  72. 72.
    Sormacheva, I.D. and Blinov, A.G., LTR retrotransposons in plants, Vavilov J. Genet. Breed., 2011, vol. 15, no. 2, pp. 351–381.Google Scholar
  73. 73.
    Kalendar, R., Tanskanen, J., Chang, W., Antonius, K., Sela, H., Peleg, O., and Schulman, A.H., Cassandra retrotransposons carry independently transcribed 5S RNA, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 15, pp. 5833–5838. doi 10.1073/pnas.0709698105CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bonchev, G., Georgiev, S., and Pearce, S., Retrotransposons and ethyl methanesulfonate-induced diversity in hexaploid wheat and Triticale, Centr. Eur. J. Biol., 2010, vol. 5, no. 6, pp. 765–776.Google Scholar
  75. 75.
    Balázová, Z., Trebichalsky, A., Gálová, Z., Kalendar, R., Schulman, A., Stratula, O., and Chnapek, M., Genetic diversity of triticale cultivars based on microsatellite and retrotransposon-based markers, J. Microbiol., Biotech. Food Sci., 2014, vol. 3, no. 2, pp. 58–60.Google Scholar
  76. 76.
    Trebichalsky, A., Schulman, A., Kalendar, R., Stratula, O., and Gálová, Z., Exploration of genetic relations between winter triticale (Triticosecale Witt.)) cultivars using retrotransposon-based markers, J. Microbiol., Biotech. Food Sci., 2012, vol. 1, pp. 711–716.Google Scholar
  77. 77.
    Yaakov, B. and Kashkush, K., Methylation, transcription, and rearrangements of transposable elements in synthetic allopolyploids, Int. J. Plant Genomics, 2011, vol. 2011, pp. 1–7. doi 10.1155/2011/569826CrossRefGoogle Scholar
  78. 78.
    Parisod, C., Alix, K., Just, J., Petit, M., Sarilar, V., Mhiri, C., Ainouche, M., Chalhoub, B., and Grandbastien, M.-A., Impact of transposable elements on the organization and function of allopolyploid genomes, New Phytol., 2010, vol. 186, no. 1, pp. 37–45. doi 10.1111/j.1469-8137.2009.03096.xCrossRefPubMedGoogle Scholar
  79. 79.
    Szućko, I. and Rogalska, S.M., Application of ISSR-PCR, IRAP-PCR, REMAP-PCR, and ITAPPCR in the assessment of genomic changes in the early generation of triticale, Biol. Plant., 2015, vol. 59, no. 4, pp. 708–714.CrossRefGoogle Scholar
  80. 80.
    Trebichalsky, A., Kalendar, R., Schulman, A., Stratula, O., Gálová, Z., Balázová, Z., and Chnapek, M., Detection of genetic relationships among spring and winter triticale (Triticosecale Witt.) and rye cultivars (Secale cereal L.) using retrotransposon-based markers, Czech J. Genet. Plant Breed., 2013, vol. 49, no. 4, pp. 171–174. doi.org/10.17221/56/2013-CJGPBCrossRefGoogle Scholar
  81. 81.
    Bento, M., Pereira, H.S., Rocheta, M., Gustafson, P., Viegas, W., and Silva, M., Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale, PLoS One, 2008, vol. 3, no. 1. e1402. doi.org/10.1371/journal.pone.0001402CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Todorovska, A., Retrotransposons and their role in plant—genome evolution, Biotechnol. Biotechnol. Eq., 2007, vol. 21, no. 3, pp. 294–305. doi.org/10.1080/ 13102818.2007.10817464Google Scholar
  83. 83.
    Kalendar, R. and Schulman, A.H., IRAP and REMAP for retrotransposon-based genotyping and fingerprinting, Nat. Protoc., 2006, vol. 1, no. 5, pp. 2478–2484. doi 10.1038/nprot.2006.377CrossRefPubMedGoogle Scholar
  84. 84.
    Bavol., A.V., Velikodzon, L.S., Pykalo, S.V., and Dubrovna, O.V., IRAP-analysis of triticale plantsregenerants, resistant to water deficit, Fact. Exp. Evol. Org., 2016, vol. 19, pp. 73–78.Google Scholar
  85. 85.
    Bavol., A.V., Zinchenko, M.O., and Dubrovna, O.V., Molecular polymorphism of wheat cell lines resistant to metabolites produced by Gaeumannomyces graminis var. tritici under the effect of osmotic stress, Cytol. Genet., 2014, vol. 48, no. 1, pp. 49–54.CrossRefGoogle Scholar
  86. 86.
    Brown, P.T.H., DNA methylation in plants and its role in tissue culture, Genome, 1989, vol. 31, no. 2, pp. 717–729. doi org/ doi 10.1139/g89-130Google Scholar
  87. 87.
    Kaeppler, S.M., Kaeppler, H.F., and Rhee, Y., Epigenetic aspects of somaclonal variation in plants, Plant Mol. Biol., 2000, vol. 43, nos. 2–3, pp. 179–188.CrossRefPubMedGoogle Scholar
  88. 88.
    Li, X., Yu, X., and Wang, N., Genetic and epigenetic instabilities induced by tissue culture in wild barley (Hordeum brevisubulatum (Trin.) Link), Plant Cell, Tiss. Organ Cult., 2007, vol. 90, no. 2, pp. 153–168. doi 10.1007/s11240-007-9224-5CrossRefGoogle Scholar
  89. 89.
    Slotkin, R.E. and Martienssen, R., Transposable elements and the epigenetic regulation of the genome, Nat. Rev. Genet., 2007, vol. 8, no. 4, pp. 272–285. doi 10.1038/nrg2072CrossRefPubMedGoogle Scholar
  90. 90.
    Phillips, R.L., Kaeppler, S.M., and Olhoft, P., Genetic instability of plant tissue cultures: breakdown of normal controls, Proc. Natl. Acad. Sci. U. S. A., 1994, vol. 91, no. 12, pp. 5222–5226.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Remeslo Myronivka Wheat Institute, National Academy of Agrarian Sciences of UkraineMyronivskii raionUkraine
  2. 2.Institute of Plant Physiology and Genetics, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations