Cytology and Genetics

, Volume 52, Issue 5, pp 360–367 | Cite as

Genetic Polymorphism of Microsatellite Loci and Their Association with Reproductive Traits in Ukrainian Meat Breed Pigs

  • S. I. LugovoyEmail author
  • V. R. KharzinovaEmail author
  • S. S. KramarenkoEmail author
  • A. V. LykhachEmail author
  • A. S. KramarenkoEmail author
  • V. Ya. LykhachEmail author


The primary goal of the study was to estimate the genetic diversity and population structure of the Ukrainian Meat breed pigs. Twelve microsatellite markers were selected from the list of the microsatellites recommended by FAO/ ISAG. The range of alleles per locus (Na) was found to be from 5 to 14 with an average of 8.42, and a total of 101 alleles were observed at these loci. The observed heterozygosity (Ho) was averaged 0.668 and expected heterozygosity (He) was 0.718, respectively. The LD-based population effective size (Ne) estimate for the Ukrainian Meat breed pigs was 68.3 (95% CI: 52–92) individuals. This population has not undergone any recent and/or sudden reduction in the effective population size and remained at mutation–drift equilibrium. The SW24, SW951, SW240, S0101, SW936, and S0228 loci genotypes were found to affect the total number of piglets born (TNB), the number of piglets born alive (NBA), and the number of piglets weaned (NW).


genetic polymorphism DNA microsatellite loci pigs Ukrainian Meat breed 



This work was carried out within the framework of the state budget research area “Scientific Substantiation and Development of New Methods for Determining Pedigree Value and Early Prediction of the Productivity of Farm Animals” (2017–2019, state registration number 0117U000485) of the Ministry of Education and Science of Ukraine as well as with the financial support of the Russian Foundation for Basic Research Mobility of Young Scientists (for S.I. Lugovoy, 2010).


  1. 1.
    Stolpovskiy, Yu.A. and Zakharov-Gezekhus, I.A., The problem of conservation of gene pools of domesticated animals, Vavilov. Zh. Genet. Selekts., 2017, vol. 21, no. 4, pp. 477–486.Google Scholar
  2. 2.
    Sizareva, E.I., Gladyr’ E.A., Proskurina N.V., Shavyrina K.M. Some aspects of microsatellite usage in pig breeding, Dostizh. Nauki Tekh. APK, 2009, no. 8, pp. 38–41.Google Scholar
  3. 3.
    Beuzen, N.D., Stear, M.J., and Chang, K.C., Molecular markers and their use in animal breeding, Vet. J., 2000, vol. 160, no. 1, pp. 42–52. doi 10.1053/tvjl.2000.0468CrossRefPubMedGoogle Scholar
  4. 4.
    Nidup, K. and Moran, C., Genetic diversity of domestic pigs as revealed by microsatellites: a mini review, Genom. Quant. Genet., 2011, vol. 2, pp. 5–18.Google Scholar
  5. 5.
    Tautz, D., Hypervariability of simple sequences as a general source for polymorphic DNA markers, Nucleic Acids Res., 1989, vol. 17, no. 16, pp. 6463–6471. doi 10.1093/nar/17.16.6463CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Marzanov, N.S., Ozerov, M.Yu., Nasibov, M.G., and Marzanova, L.K., Microsatellites and their application in investigation of genetic diversity of animals (review), S-kh. Biol., 2004, no. 2, pp. 104–111.Google Scholar
  7. 7.
    Topiha, V.S., Kramarenko, S.S., and Lugovoy, S.I., Evaluation of linkage disequilibrium and “bottleneck” effect on microsatellite DNA loci in Ukraine breed populations of pigs, Svinarstvo, 2012, vol. 61, pp. 57–61.Google Scholar
  8. 8.
    Lugovoy, S.I., Kramarenko, S.S., and Lykhach, V.Ya., Analysis of the genetic-demographic processes in the Large White breed pig based on microsatellite DNA loci, Sci. Heritage, 2017, no. 10 (10), part 3, pp. 4–7.Google Scholar
  9. 9.
    Mekkawy, W., Hafez, Y.M., Attia, M., Abdel-Salam, S.A.M., and Abou-Bakr, S., Association analysis between microsatellite DNA markers and milk yield and its components in Egyptian buffaloes using a random regression model, Egyptian J. Anim. Prod., 2012, vol. 49, no. 1, pp. 9–18.Google Scholar
  10. 10.
    Zabolewicz, T., Czarnik, U., Strychalski, J., Pareek, C.S., and Pierzchała, M., The association between microsatellite Bm6438 and milk performance traits in Polish Holstein-Friesian cattle, Nzech. J. Anim. Sci., 2011, vol. 56, no. 3, pp. 107–13. doi 10.17221/1299-CJASCrossRefGoogle Scholar
  11. 11.
    Chatterjee, R., Sharma, R.P., Bhattacharya, T.K., Niranjan, M., and Reddy, B.L., Microsatellite variability and its relationship with growth, egg production, and immunocompetence traits in chickens, Biochem. Genet., 2010, vol. 48, nos. 1–2, pp. 71–82. doi 10.1007/ s10528-009-9296-5CrossRefPubMedGoogle Scholar
  12. 12.
    Rudresh, B.H., Kotresh, A.M., Ashok, M., and Murthy, H.N.N., Association between microsatellite genotypes and body weight at different ages in indigenous chicken ecotypes, Vet. Sci. Res. J., 2016, vol. 7, no. 1, pp. 1–8. doi 10.15740/has/vsrj/7.1/1-8CrossRefGoogle Scholar
  13. 13.
    Geldermann, H., Mir, M.R., Kuss, A.W., and Bartenschlager, H., OLA-DRB1 microsatellite variants are associated with ovine growth and reproduction traits, Genet. Sel. Evol., 2006, vol. 38, no. 4, pp. 431–444. doi 10.1051/gse:2006013CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Petroli, C.D., Paiva, S.R., Prado, PaimT., and McManus, C.M., Association of microsatellite markers with production traits in Santa Ines and crossbred sheep, Arch. Vet. Sci., 2014, vol. 19, no. 1, pp. 7–16. doi 10.5380/avs.v19i1.31873CrossRefGoogle Scholar
  15. 15.
    Wang, J.G., Hou, J.-X., Li, G., Zhu, G.Q., and Cao, B., Polymorphism of four microsatellites and their polymerisation effect on litter size in Boer goats, Electron. J. Biotechnol., 2013, vol. 16, no. 4, pp. 1–10. doi 10.2225/vol16-issue4-fulltext-13Google Scholar
  16. 16.
    Amos, W. and Acevedo-Whitehouse, K.W., A new test for genotype-fitness associations reveals a single microsatellite allele that strongly predicts the nature of tuberculosis infections in wild boar, Mol. Ecol. Resour., 2009, vol. 9, no. 4, pp. 1102–1111. doi 10.1111/j.1755-0998.2009.02560.xCrossRefPubMedGoogle Scholar
  17. 17.
    Siliy, L., Rodríguez, M.C., Fernández, A., Barragán, C., Benítez, R., Óvilo, C., and Fernández, A.I., Measuring inbreeding and inbreeding depression on pig growth from pedigree or SNP-derived metrics, J. Anim. Breed. Genet., 2013, vol. 130, no. 5, pp. 349–360. doi 10.1111/jbg.12031Google Scholar
  18. 18.
    Zinovieva, N.A., Harzinova, V.R., and Logvinova, T.I., Gladyr’ E.A., Sizareva E.I., Chinarov Yu.I. Microsatellite profiles as criteria for confirmation of breed purity and for evaluation of heterogeneity degree of parents’ pairs in pig breeding, S-kh. Biol., 2011, no. 6, pp. 47–53.Google Scholar
  19. 19.
    Peakall, R. and Smouse, P.E., GENAIEX 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Res., 2006, vol. 6, no. 1, pp. 288–295. 2005.01155.x doi 10.1111/j.1471-8286Google Scholar
  20. 20.
    Rousset, F., Genepop’007: a complete re-implementation of the Genepop software for Windows and Linux, Mol. Ecol. Res., 2008, vol. 8, no. 1, pp. 103–106. doi 10.1111/j.1471-8286.2007.01931.xCrossRefGoogle Scholar
  21. 21.
    Yeh, F.C. and Boyle, T.J.B., Population genetic analysis of codominant and dominant markers and quantitative traits, Belg. J. Bot., 1997, vol. 129, pp. 157–163.Google Scholar
  22. 22.
    Luikart, G. and Cornuet, J.M., Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data, Conserv. Biol., 1998, vol. 12, no. 1, pp. 228–237. doi 10.1111/j.1523-1739.1998.96388.xCrossRefGoogle Scholar
  23. 23.
    Cornuet, J.M. and Luikart, G., Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data, Genetics, 1996, vol. 144, no. 4, pp. 2001–2014.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Do, C., Waples, R.S., Peel, D., Macbeth, G.M., Tillett, B.J., and Ovenden, J.R., NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data, Mol. Ecol. Resour., 2014, vol. 14, no. 1, pp. 209–214. doi 10.1111/1755-0998.12157CrossRefPubMedGoogle Scholar
  25. 25.
    Lugovoy, S.I., Characterization of Ukraine’s local pig breeds genofund for the loci of DNA microsatellites, Vestn. NGAU, 2013, no. 2 (27), pp. 67–72.Google Scholar
  26. 26.
    Lugovoy, S., Kramarenko, S., and Galimov, S., Genetic polymorphism of the red white belted breed pigs based on microsatellite markers, Visn. Ahr. Nauky Prychornomor., 2017, no. 1 (93), pp. 113–119.Google Scholar
  27. 27.
    Lugovoy, S.I., Kramarenko, S.S., and Lykhach, V.Ya., Genetic polymorphism of the Landrace pig based on microsatellite markers, Nauk. Visn. LNUVMBT im. S.Z. Gzhytskoho, 2017, vol. 19, no. 74, pp. 63–66. doi 10.15421/nvlvet7414Google Scholar
  28. 28.
    Kharzinova, V.R., Zinovieva, N.A., Bateneva, N.V., Lugovoj, S.N., Gladyr, E.A., Goncharenko, G.M., Zhuchaev, K.V., Maurcheva, V.N., and Barsukova, M.A., The characterization of allele pool of Siberian population of fast-growing meet breed using microsatellites, Dostizh. Nauki Tekhn. APK, 2011, no. 10, pp. 59–61.Google Scholar
  29. 29.
    Sollero, B.P., Paiva, S.R., Faria, D.A., Guimaraes, S.E.F., Castro, S.T.R., Egito, A.A., Albuquerque, M.S.M., Piovezan, U., Bertani, G.R., and Mariante, A.D.S., Genetic diversity of Brazilian pig breeds evidenced by microsatellite markers, Livest. Sci., 2009, vol. 123, no. 1, pp. 8–15. doi 10.1016/j.livsci.2008.09.025CrossRefGoogle Scholar
  30. 30.
    Yang, S.L., Wang, Z.G., Liu, B., Zhang, G.X., Zhao, S.H., Yu, M., Fan, B., Li, M., Xiong, T., and Li, K., Genetic variation and relationships of eighteen Chinese indigenous pig breeds, Genet. Sel. Evol., 2003, vol. 35, no. 7, pp. 657–671. doi 10.1051/gse:2003045CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ayizanga, R.A., Kayang, B.B., Adomako, K., Adenyo, C., Inoue-Murayama, M., and Asamoah, L., Genetic diversity of some Ghanaian pigs based on microsatellite markers, Livestock Res. Rural Dev., 2016, vol. 28, no. 2.Google Scholar
  32. 32.
    Zaman, G., Shekar, M.C., and Aziz, A., Molecular characterization of Meghalaya local pigs (Niang Megha) using microsatellite markers, Indian J. Sci. Technol., 2013, vol. 6, no. 10, pp. 5302–5306.Google Scholar
  33. 33.
    Zaman, G., Shekar, M.C., Ferdoci, A.M., and Laskar, S., Molecular characterization of Ghungroo pig, Int. J. Anim. Biotechnol., 2013, vol. 3, no. 1, pp. 1–4.Google Scholar
  34. 34.
    Zaman, G., Laskar, S., Ferdoci, A.M., Shekar, M.C., and Chetri, A.J., Molecular characterization of Doom pigs using microsatellite markers, Afr. J. Biotechnol., 2014, vol. 13, no. 30, pp. 3017–3022. doi. org/ doi 10.5897/AJB2014.13729CrossRefGoogle Scholar
  35. 35.
    Zaman, G., Chandra, ShekarM., Kharghoria, G., and Ahmed, F.A., Molecular characterization of Mizoram local pigs (Zovawk) using microsatellite markers, BioTechnol.: Indian J., 2014, vol. 10, no. 1, pp. 24–28.Google Scholar
  36. 36.
    Zaman, G., Shekar, M.C., Nath, M.K., Kiba, H.Z., and Savino, N., Molecular characterization of Votho pigs from Nagaland using microsatellite markers, Indian J. Anim. Sci., 2014, vol. 84, no. 10, pp. 1137–1139.Google Scholar
  37. 37.
    Kharzinova, V.R., Zhuchaev, K.V., Kostyunina, O.V., Kochneva, M.L., Chydym, S.M., and Zinovieva, N.A., Molecular-genetic identification and certification of the Kemerovo breed of pigs based on STR-analysis, Dostizh. Nauki Tekh. APK, 2017, vol. 31, no. 6, pp. 62–64.Google Scholar
  38. 38.
    Kharzinova, V.R., Kostyunina, O.V., and Zinovieva, N.A., Comparative characterization of the allele pool of local pig breeds based on microsatellite analysis, Svinovodstvo, 2017, vol. 1, pp. 25–27.Google Scholar
  39. 39.
    Lugovoy, S.I., Kramarenko, S.S., and Lykhach, V.Ya., Intra-breed variation in the Large White pig breed based on the microsatellite DNA polymorphism, Stiinta Agricola, 2017, no. 1, pp. 94–98.Google Scholar
  40. 40.
    Arun, KumarDeA., Jeyakumar, S., Kundu, A., Kundu, M.S., Sunder, J., and Ramachandran, M., Genetic characterization of Andaman Desi pig, an indigenous pig germplasm of Andaman and Nicobar group of islands, India by microsatellite markers. Vet. World, 2013, vol. 6, no. 10, pp. 750–753. doi 10.14202/vetworld.2013.750-753Google Scholar
  41. 41.
    Swart, H., Kotze, A., Olivier, P.A.S., and Grobler, J.P., Microsatellite-based characterization of Southern African domestic pigs (Sus scrofa domestica), S. Af. J. Anim. Sci., 2010, vol. 40, no. 2, pp. 121–132.Google Scholar
  42. 42.
    Zaman, G., Shekar, M.C., Laskar, S., Ferdoci, A.M., and Rank, D.N., Molecular characterization of Assam Local pig, Indian J. Biotechnol., 2015, vol. 14, no. 3, pp. 416–419.Google Scholar
  43. 43.
    Carneiro, H., Paiva, S.R., Ledur, M., Figueiredo, E.A.P., Grings, V.H., Silva, F.C.P., and McManus, C., Pedigree and population viability analyses of a conservation herd of Moura pig, Anim. Genet. Resour., 2014, vol. 54, pp. 127–134. doi 10.1017/s2078633613000362CrossRefGoogle Scholar
  44. 44.
    Crovetti, A., Sirtori, F., Pugliese, C., Franci, O., and Bozzi, R., Pedigree analysis of Cinta Senese and Mora Romagnola breeds, Acta Agric. Slov., 2013, vol. 4, pp. 41–44.Google Scholar
  45. 45.
    Herrero-Medrano, J.M., Megens, H.J., Groenen, M.A., Ramis, G., Bosse, M., Perez-Enciso, M., and Crooijmans, R.P., Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula, BMC Genet., 2013, vol. 14, no. 106, pp. 1–13. doi 10.1186/1471-2156-14-106CrossRefGoogle Scholar
  46. 46.
    Meuwissen, T.H.E. and Woolliams, J.A., Effective sizes of livestock populations to prevent a decline in fitness, Theor. Appl. Genet., 1994, vol. 89, nos. 7–8, pp. 1019–1026. doi 10.1007/BF00224533PubMedGoogle Scholar
  47. 47.
    Cowled, B.D., Aldenhoven, J., Odeh, I.O., Garrett, T., Moran, C., and Lapidge, S.J., Feral pig population structuring in the rangelands of eastern Australia: applications for designing adaptive management units, Conserv. Genet., 2008, vol. 9, no. 1, pp. 211–224. doi 10.1007/s10592-007-9331-1CrossRefGoogle Scholar
  48. 48.
    Li, F.E., Mei, S.Q., Deng, C.Y., Jiang, S.W., Zuo, B., Zheng, R., Li, J.L., Xu, D.Q., Lei, M.G., and Xiong, Y.Z., Association of a microsatellite flanking FSHB gene with reproductive traits and reproductive tract components in pigs, Czech J. Anim. Sci., 2008, vol. 53, no. 4, pp. 139–144. doi 10.17221/371-CJASCrossRefGoogle Scholar
  49. 49.
    Korwin-Kossakowska, A., Sender, G., and Kuryl, J., Associations between the microsatellite DNA sequence in the IGF1 gene, polymorphism in the ESR gene and selected reproduction traits in F1 (Zlotnicka Spotted x Polish Large White) sows, Anim. Sci. Pap. Rep., 2004, vol. 22, no. 2, pp. 215–226.Google Scholar
  50. 50.
    Chmurzynska, A., Mackowski, M., Szydlowski, M., Melonek, J., Kamyczek, M., Eckert, R., Ryzycki, M., and Switonski, M., Polymorphism of intronic microsatellites in the A-FABP and LEPR genes and its association with productive traits in the pig, J. Anim. Feed Sci., 2004, vol. 13, no. 61, pp. 615–624. doi 10.22358/jafs/67629/2004CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Mykolayiv National Agrarian UniversityMykolayivUkraine
  2. 2.Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst,pos. Dubrovitsy, Podolsk municipal districtRussia

Personalised recommendations