Cytology and Genetics

, Volume 52, Issue 5, pp 323–330 | Cite as

Epicuticular Wax Composition of Leaves of Tilia L. Trees as a Marker of Adaptation to the Climatic Conditions of the Steppe Dnieper

  • Yu. V. LykholatEmail author
  • N. O. KhromykhEmail author
  • Ya. V. PirkoEmail author
  • A. A. AlexeyevaEmail author
  • N. L. PastukhovaEmail author
  • Ya. B. BlumeEmail author


The relationship between the adaptive ability of different linden genotypes to the changing climatic conditions of the Steppe Dnieper and the epicuticular wax component composition of tree leaves was investigated. Specificity of the epicuticular wax hydrocarbon composition of linden autochthonous species (T. cordata) and introduced species (T. platyphyllos and T. begoniifolia) was established. For all genotypes, significant differences in the composition of epicuticular waxes from the surface of shaded and sun-adapted leaves were identified. The greatest accumulation of the epicuticular waxes was on the leaves of T. platyphyllos both under the shading conditions and illumination (11.0 and 17.6 μg/cm2, respectively). The general pattern for the genus Tilia L. species consisted in a substantial increase in the content of very long-chain n-alkanes simultaneously with a sharp decrease in the free fatty acid content in the composition of epicuticular waxes under the intensive illumination of leaves.


cuticle surface wax linden species lighting fittings adaptation 



Researches were carried out with the support of the grant of the Ukrainian State Fund of Research Financing “Population-Genetic Analysis of the Climatic Changes Influence on the Invasiveness of Alien Plants in the Steppe Dnieper” (state registration no. 0117U006749).


  1. 1.
    Jetter, R. and Riederer, M., Localization of the transpiration barrier in the epi- and intracuticular waxes of eight plant species: water transport resistances are associated with fatty acyl rather than alicyclic components, Plant Physiol., 2016, vol. 170, no. 2, pp. 921–934.CrossRefPubMedGoogle Scholar
  2. 2.
    Buschhaus, C., Herz, H., and Jetter, R., Chemical composition of the epicuticular and intracuticular wax layers on adaxial sides of Rosa canina leaves, Ann. Bot., 2007, vol. 100, no. 6, pp. 1557–1564. doi 10.1093/aob/mcm255CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Muller, C. and Riederer, M., Plant surface properties in chemical ecology, J. Chem. Ecol., 2005, vol. 31, no. 11, pp. 2621–2651. doi 10.1007/s10886-005-7617-7CrossRefPubMedGoogle Scholar
  4. 4.
    Nobusawa, T., Okushima, Y., Nagata, N., Kojima, M., Sakakibara, H., and Umeda, M., Synthesis of very-long-chain fatty acids in the epidermis controls plant organ growth by restricting cell proliferation, PLoS Biol., 2013, vol. 11, no. 4. e1001531. doi 10.1371/journal.pbio.1001531CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bernard, A. and Joubès, J., Arabidopsis cuticular waxes: advances in synthesis, export and regulation, Prog. Lipid Res., 2013, vol. 52, no. 1, pp. 110–129. doi 10.1016/j.plipres.2012.10.002CrossRefPubMedGoogle Scholar
  6. 6.
    Sæbo, A., Popek, R., Nawrot, B., Hanslin, H.M., Gawronska, H., and Gawronski, S.W., Plant species differences in particulate matter accumulation on leaf surface, Sci. Total Env., 2012, vols. 427–428, pp. 347–354. doi 10.1016/j.scitotenvGoogle Scholar
  7. 7.
    Buschhaus, C. and Jetter, R., Composition differences between epicuticular and intracuticular wax substructures: how do plants seal their epidermal surfaces?, J. Exp. Bot., 2011, vol. 62, no. 3, pp. 841–853. doi 10.1093/jxb/erq366CrossRefPubMedGoogle Scholar
  8. 8.
    Shepherd, T. and Griffiths, W.D., The effects of stress on plant cuticular waxes, New Phytol., 2006, vol. 171, no. 3, pp. 469–499. doi 10.1111/j.1469-8137.2006.01826.xCrossRefPubMedGoogle Scholar
  9. 9.
    Jetter, R., Schaffer, S., and Riederer, M., Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: evidence from Prunus laurocerasus L., Plant Cell Environ., 2000, vol. 23, pp. 619–628. 10.1046/j.1365-3040.2000.00581.xGoogle Scholar
  10. 10.
    Ensikat, H.J., Neinhuis, C., and Barthlott, W., Direct access to plant epicuticular wax crystals by a new mechanical isolation method, Int. J. Plant Sci., 2000, vol. 161, no. 1, pp. 143–148.CrossRefPubMedGoogle Scholar
  11. 11.
    Jetter, R. and Schaffer, S., Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development, Plant Physiol., 2001, vol. 126, pp. 1725–1737.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gulz, P.-G., Muller, E., and Prasad, B.N., Developmental and seasonal variations in the epicuticular waxes of Tilia tomentosa leaves, Phytochemistry, 1991, vol. 30, no. 3, pp. 769–773. Scholar
  13. 13.
    Gulz, P.-G., Epicuticular leaf waxes in the evolution of the plant kingdom, J. Plant Physiol., 1994, vol. 143, pp. 453–464. Scholar
  14. 14.
    Zeisler, V. and Schreiber, L., Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier, Planta, 2016, vol. 243, no. 1, pp. 65–81. doi 10.1007/s00425-015-2397-yCrossRefPubMedGoogle Scholar
  15. 15.
    Hansjakob, A., Bischof, S., Bringmann, G., Riederer, M., and Hildebrandt, U., Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose- and chain length-dependent manner, New Phytol., 2010, vol. 188, no. 4, pp. 1039–1054. doi 10.1111/J.1469-8137.2010.03419.XCrossRefPubMedGoogle Scholar
  16. 16.
    Koch, K. and Ensikat, H.J., The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly, Micron, 2008, vol. 39, no. 7, pp. 759–772. doi 10.1016/j.micron.2007.11.010CrossRefPubMedGoogle Scholar
  17. 17.
    Bussotti, F., Pollastrini, M., Holland, V., and Bruggemann, W., Functional traits and adaptive capacity of European forests to climate change, Environ. Exp. Bot., 2015, vol. 111, no. 3, pp. 91–113. j.envexpbot.2014.11.006CrossRefGoogle Scholar
  18. 18.
    Wang, W., Liu, X., Gai, X., Ren, J., Liu, X., Cai, Y., Wang, Q., and Ren, H., Cucumis sativus L. WAX2 plays a pivotal role in wax biosynthesis, influencing pollen fertility and plant biotic and abiotic stress responses, Plant Cell Physiol., 2015, vol. 56, no. 7, pp. 1339–1354. Scholar
  19. 19.
    Engelsdorf, T., Will, C., Hofmann, J., Schmitt, C., Merritt, B.B., Rieger, L., Frenger, M.S., Marschall, A., Franke, R.B., Pattathil, S., and Voll, L.M., Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants, J. Exp. Bot., 2017, vol. 68, no. 3, pp. 701–713. doi 10.1093/jxb/erw434PubMedGoogle Scholar
  20. 20.
    Kim, K.S., Park, S.H., and Jenks, M.A., Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit, J. Plant Physiol., 2007, vol. 4, no. 9, pp. 1134–1143. doi 10.1016/j.jplph.2006.07.004CrossRefGoogle Scholar
  21. 21.
    Gonzalez, A. and Ayerbe, L., Effect of terminal water stress on leaf epicuticular wax load, residual transpiration and grain yield in barley, Euphytica, 2010, vol. 172, no. 3, pp. 341–349.CrossRefGoogle Scholar
  22. 22.
    Racovita, R.C. and Jetter, R., Composition of the epicuticular waxes coating the adaxial side of Phyllostachys aurea leaves: Identification of very-long-chain primary amides, Phytochemistry, 2016, vol. 130, pp. 252–261.CrossRefPubMedGoogle Scholar
  23. 23.
    Tomasi, P., Dyer, D.M., Jenks, M.A., and Abdel-Haleem, H., Characterization of leaf cuticular wax classes and constituents in a spring Camelina sativa diversity panel, Indust. Crops Products, 2018, vol. 112, pp. 247–251. Scholar
  24. 24.
    Kunst, L. and Samuels, L., Plant cuticles shine: advances in wax biosynthesis and export, Curr. Opin. Plant Biol., 2009, vol. 12, pp. 721–727. doi 10.1016/ j.pbi.2009.09.009CrossRefPubMedGoogle Scholar
  25. 25.
    Yeats, T.H. and Rose, J.K., The formation and function of plant cuticles, Plant Physiol., 2013, vol. 163, no. 1, pp. 5–20. doi 10.1104/pp.113.222737CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Guzmán-Delgado, P., Graça, J., Cabral, V., Gil, L., and Fernández, V., The presence of cutan limits the interpretation of cuticular chemistry and structure: Ficus elastica leaf as an example, Physiol. Plant, 2016, vol. 157, no. 2, pp. 205–220. doi 10.1111/ppl.2414CrossRefPubMedGoogle Scholar
  27. 27.
    Kim, K.W., Ahn, J.J., and Lee, J.H., Micromorphology of epicuticular wax structures of the garden strawberry leaves by electron microscopy: syntopism and polymorphism, Micron, 2009, vol. 40, no. 3, pp. 327–334. doi 10.1016/j.micron.2008.11.002CrossRefPubMedGoogle Scholar
  28. 28.
    Alexeyeva, A.A., Lykholat, Y.V., Khromykh, N.O., Kovalenko, I.M., and Boroday, E.S., The impact of pollutants on the antioxidant protection of species of the genus Tilia at different developmental stages, Visn. Dnipropetr. Univ. Ser. Biol. Ekol., 2016, vol. 24, no. 1, pp. 188–192. doi 10.15421/011623CrossRefGoogle Scholar
  29. 29.
    Lykholat, Yu.V., Khromykh, N.O., Ivan’ko, I.A., Matyukha, V.L., Kravets, S.S., Didur, O.O., Alexeyeva, A.A., and Shupranova, L.V., Assessment and prediction of the invasiveness of some alien plants in conditions of climate change in the steppe Dnieper region, Biosyst. Div., 2017, vol. 25, no. 1, pp. 52–59. doi 10.15421/011708CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Oles Honchar Dnipro National UniversityDniproUkraine
  2. 2.Institute of Food Biotechnology and Genomics, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations