Advertisement

Cytology and Genetics

, Volume 52, Issue 5, pp 374–384 | Cite as

Hypovirulence of Mycoviruses as a Tool for Biotechnological Control of Phytopathogenic Fungi

  • A. N. Kyrychenko
  • K. S. Tsyganenko
  • S. V. Olishevska
Article
  • 63 Downloads

Abstract

This paper reports brief systematization of the current knowledge of the biology of mycoviruses, viral morphology, and genetics in particular as well as characteristics of the virus transmission and infection symptoms in fungal cells. The mechanisms involved in antiviral defense in the members of different classes of fungi are discussed. Insights into the role of hypovirulent mycoviruses in the biotechnological control of phytopathogenic fungi are provided.

Keywords:

mycoviruses hypovirulence biotechnological control 

Notes

REFERENCES

  1. 1.
    Ghabrial, S.A. and Suzuki, N., Viruses of plant pathogenic fungi, Annu. Rev. Phytopathol., 2009, vol. 47, pp. 353–384. doi 10.1146/annurev-phyto-080508-081932CrossRefPubMedGoogle Scholar
  2. 2.
    Wiebols, G.L.W. and Wieringa, K.T., Bacteriophagie een algemeen voorkomend verschijnsel, Fonds Landbouw Export Bureau, 1936, no. 16, pp. 1916–1918.Google Scholar
  3. 3.
    Sinden, J.W. and Hauser, E., Report on two new mushroom diseases, Mushroom Sci., 1950, vol. 1, pp. 96–100.Google Scholar
  4. 4.
    Hollings, M., Viruses associated with a die-back disease of cultivated mushroom, Nature, 1962, vol. 196, pp. 962–965.CrossRefGoogle Scholar
  5. 5.
    Romaine, C.P. and Schlagnhaufer, B., PCR Analysis of the viral complex associated with La France disease of Agaricus bisporus, Appl. Envirom. Microbiol., 1995, vol. 61, no. 6, pp. 2322–5.Google Scholar
  6. 6.
    Revill, P.A. and Wright, P.J., RT-PCR detection of dsRNAs associated with La France disease of the cultivated mushroom Agaricus bisporus (Lange) Imbach, J. Virol. Methods, 1997, vol. 63, nos. 1–2, pp. 17–26.CrossRefPubMedGoogle Scholar
  7. 7.
    Borodynko, N., Hasiyw-Jaroszewska, B., Rymelska, N., and Pospieszny, H., La France disease of the cultivated mushroom Agaricus bisporus in Poland, Acta Virol., 2010, vol. 54, no. 3, pp. 217–219.CrossRefPubMedGoogle Scholar
  8. 8.
    Magae, Y. and Sunagawa, M., Characterization of a mycovirus associated with the brown discoloration of edible mushroom, Flammulina velutipes, Virol. J., 2010, vol. 7, p. 342.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Magae, Y., Molecular characterization of a novel mycovirus in the cultivated mushroom, Lentinula edodes, Virol. J., 2012, vol. 6, no. 9, p. 60. doi 10.1186/ 1743-422X-9-60CrossRefGoogle Scholar
  10. 10.
    Grogan, R.G. and Campbell, R.N., Fungi as vectors and hosts of viruses, Ann. Rev. Phytopathol., 1966, vol. 4, pp. 29–52. doi.org/10.1146/annurev.py. 04.090166.000333Google Scholar
  11. 11.
    Hollings, M. and Stone, O.M., Viruses in fungi, Sci. Progr., 1969, vol. 57, no. 227, p. 371.PubMedGoogle Scholar
  12. 12.
    Jiang, D. and Ghabrial, S.A., Molecular characterization of Penicillium chrysogenum virus: reconsideration of the taxonomy of the genus Chrysovirus, J. Gen. Virol., 2004, vol. 85, pp. 2111–2121. doi 10.1099/vir.0.79842-0CrossRefPubMedGoogle Scholar
  13. 13.
    Bozarth, R.F., Mycoviruses: a new dimension in microbiology, Environ. Health Perspect., 1972, vol. 2, pp. 23–39.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nuss, D.L., Hypovirulence: mycoviruses at the fungal–plant interface, Nat. Rev. Microbiol., 2005, vol. 3, pp. 632–642. doi 10.1038/nrmicro1206CrossRefPubMedGoogle Scholar
  15. 15.
    Xie, J. and Jiang, D., New insights into mycoviruses and exploration for the biological control of crop fungal diseases, Annu. Rev. Phytopathol., 2014, vol. 52, pp. 45–68. doi 10.1146/annurev-phyto-102313-050222CrossRefPubMedGoogle Scholar
  16. 16.
    van de Sande, W.W.J., Lo-Ten-Foe, J.R., van Belkum, A., Netea, M.G., Kullberg, B.J., and Vonk, A.G., Mycoviruses: future therapeutic agents of invasive fungal infections in humans?, Eur. J. Clin. Microbiol. Infect. Dis., 2010, vol. 29, no. 7, pp. 755–763. doi 10.1007/s10096-010-0946-7CrossRefPubMedGoogle Scholar
  17. 17.
    Pearson, M.N., Beever, R.E., Boine, B., and Arthur, K., Mycoviruses of filamentous fungi and their relevance to plant pathology, Mol. Plant Pathol., 2009, vol. 10, no. 1, pp. 115–128. doi 10.1111/j.1364-3703.2008.00503.xCrossRefPubMedGoogle Scholar
  18. 18.
    Roossinck, M.J., The good viruses: viral mutualistic symbioses, Nat. Rev. Microbiol., 2011, vol. 9, no. 2, pp. 99–108. doi 10.1038/nrmicro2491CrossRefPubMedGoogle Scholar
  19. 19.
    Márquez, L.M. and Roossinck, M.J., Do persistent RNA viruses fit the trade-off hypothesis of virulence evolution?, Curr. Opin. Virol., 2012, vol. 2, no. 5, pp. 556–60.CrossRefPubMedGoogle Scholar
  20. 20.
    Ghabrial, S.A., Castyn, J.R., Jiang, D., Nibert, M.L., and Suzuki, N., 50-Plus years of fungal viruses, Virology, 2015, vols. 479–480, pp. 356–368. doi 10.1016/ j.virol.2015.02.034CrossRefPubMedGoogle Scholar
  21. 21.
    Jiang, D., Fu, Y., Guoqing, L., and Ghabrial, S.A., Mycoviruses: viruses of the plant pathogenic fungus Sclerotinia sclerotiorum, Adv. Virus Res., 2013, vol. 86, pp. 215–248. doi 10.1016/B978-0-12-394315-6.00008-8CrossRefPubMedGoogle Scholar
  22. 22.
    Woods, D.R., Ross, I.W., and Hendry, D.A., A new killer factor produced by a killer/sensitive yeast strain, J. Gen. Microbiol., 1974, vol. 81, pp. 285–289.CrossRefPubMedGoogle Scholar
  23. 23.
    Woods, D.R. and Bevan, E.A., Studies on the nature of the killer factor produced by Saccharomyces cerevisiae, J. Gen. Microbiol., 1968, vol. 51, pp.115–126.CrossRefPubMedGoogle Scholar
  24. 24.
    Bussey, H., Physiology of the killer factor in yeast, Adv. Microbial. Physiol., 1981, vol. 22, pp. 93–122.CrossRefGoogle Scholar
  25. 25.
    Wickner, R.B., Fujimura, T., and Esteban, R., Viruses and prion of Saccharomyces cerevisiae, Adv. Virus Res., 2013, vol. 86, pp. 1–36. doi 10.1016/B978-0-12-394315-6.00001-5CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Marquina, D., Santos, A., and Peinado, J., Biology of killer yeasts, Int. Microbiol., 2002, vol. 5, no. 2, pp. 65–71. doi 10.1007/s10123-002-0066-zCrossRefPubMedGoogle Scholar
  27. 27.
    Wloch-Salamon, D.M., Sociobiology of the budding yeast, J. Biosci., 2014, vol. 39, no. 2, pp. 225–236.CrossRefPubMedGoogle Scholar
  28. 28.
    Márquez, L.M., Redman, R.S., Rodriguez, R.J., and Roossinck, M.J., A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance, Science, 2007, vol. 315, no. 5811, pp. 513–515. doi 10.1126/science.1136237CrossRefPubMedGoogle Scholar
  29. 29.
    Herrero, N., Marquez, S.S., and Zabalgogeazcoa, I., Mycoviruses are common among different species of endophytic fungi of grasses, Arch. Virol., 2009, vol. 154, pp. 327–330. doi 10.1007/s00705-008-0293-5CrossRefPubMedGoogle Scholar
  30. 30.
    Asencio, N.H., Máquez, S.S., and Zabalgogeazcoa, I., Mycovirus effect on the endophytic establishment of the entomopathogenic fungus Tolypocladium cylindrosporum in tomato and bean plants, BioControl., 2013, vol. 58, no. 2, pp. 225–232.CrossRefGoogle Scholar
  31. 31.
    Lee, K-M., Yu, J., Son, M., Lee, Y.-W., and Kim, K-H., Transmission of Fusarium boothii mycovirus via protoplast fusion causes hypovirulence in other phytopathogenic fungi, PLoS One, 2011, vol. 6, no. 6. e21629. doi 10.1371/journal.pone.0021629CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Son, M., Yu, J., and Kim, K.-H., Five questions about mycoviruses, PLoS Pathog., 2015, vol. 11, no. 11. e1005172. doi.org/10.1371/journal.ppat.1005172Google Scholar
  33. 33.
    Ghabrial, S.A., Origin, adaptation and evolutionary pathways of fungal viruses, Virus Genes, 1998, vol. 16, no. 1, pp. 119–131.CrossRefPubMedGoogle Scholar
  34. 34.
    Xie, J., Wei, D., Jiang, D., Fu, Y., Li, G., Ghabrial, S., and Peng, Y., Characterization of debilitation associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum, J. Gen. Virol., 2006, vol. 87, no. 1, pp. 241–249. doi 10.1099/vir.0.81522-0CrossRefPubMedGoogle Scholar
  35. 35.
    Yu, X., Li, B., Fu, Y., Xie, J., Cheng, J., Ghabrial, S.A., Li, G., Yi, X., and Jiang, D., Extracellular transmission of a DNA mycovirus and its use as a natural fungicide, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 4, pp. 1452–1457. doi 10.1073/pnas.1213755110CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Choi, G.H., Dawe, A.L., Churbanov, A., Smith, M.L., Milgroom, M.G., and Nuss, D.L., Molecular characterization of vegetative incompatibility genes that restrict hypovirus transmission in the chestnut blight fungus Cryphonectria parasitica, Genetics, 2012, vol. 190, no. 1, pp. 113–127. doi 10.1534/genetics.111.133983Google Scholar
  37. 37.
    Fauquet, C.M., Mayo, M., Maniloff, M.A., Desselberger, U., and Ball, L.A., Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses, London: Academic Press, 2005.Google Scholar
  38. 38.
    Liu, L., Xie, J., Cheng, J., Fu, Y., Li, G., Yi, X., and Jiang, D., Fungal negative-stranded RNA virus that is related to bornaviruses and nyaviruses, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 33, pp. 12205–12210. doi 10.1073/pnas.1401786111CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Marzano, S.-Y.L. and Domier, L.L., Novel mycoviruses discovered from metatranscriptomics survey of soybean phyllosphere phytobiomes, Virus Res., 2016, vol. 213, pp. 332–342. doi 10.1016/j.virusres.2015.11.002CrossRefPubMedGoogle Scholar
  40. 40.
    Marzano, S.-Y.L., Nelson, B.D., Ajayi-Oyetunde, O., Bradley, C.A., Hughes, T.J., Hartman, G.L., Eastburn, D.M., and Domier, L.L., Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens, J. Virol., 2016, vol. 90, no. 15, pp. 6846–6863. doi 10.1128/JVI.00357-16CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Horiuchi, H. and Fukuhara, T., Putative replication intermediates in Endornavirus, a novel genus of plant dsRNA viruses, Virus Genes, 2004, vol. 29, no. 3, pp. 365–375. doi 10.1007/s11262-004-7441-0CrossRefPubMedGoogle Scholar
  42. 42.
    Cole, T.E., Hong, Y., Brasier, C.M., and Buck, K.W., Detection of an RNA-dependent RNA polymerase in mitochondria from a mitovirus-infected isolate of the Dutch elm disease fungus, Ophiostoma novo-ulmi, Virology, 2000, vol. 268, no. 2, pp. 239–243. doi.org/ 10.1006/viro.1999.0097Google Scholar
  43. 43.
    Kanhayuwa, L., Kotta-Loizou, I., Özkan, S., Gunning, A.P., and Coutts, R.H.A., A novel mycovirus from Aspergillus fumigatus contains four unique dsRNAs as its genome and is infectious as dsRNA, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 29, pp. 9100–9105. doi 10.1073/pnas.1419225112CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhang, R., Liu, S., Chiba, S., Kondo, H., Kanematsu, S., and Suzuki, N., A novel single-stranded RNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, with similarity to hypolike viruses, Front. Microbiol., 2014, vol. 5, p. 360. doi 10.3389/fmicb.2014.00360PubMedPubMedCentralGoogle Scholar
  45. 45.
    Wang, L., Zhang, J., Zhang, H., Qiu, D., and Guo, L., Two novel relative double-stranded RNA mycoviruses infecting Fusarium poae strain SX63, Int. J. Mol. Sci., 2016, vol.17, no. 5, p. 641. doi 10.3390/ijms17050641CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Hillman, B.I. and Cai, G., The family Narnaviridae: simplest of RNA viruses, Adv. Virus Res., 2013, vol. 86, pp. 149–176. doi 10.1016/B978-0-12-394315-6.00006-4CrossRefPubMedGoogle Scholar
  47. 47.
    Rastgou, M., Habibi, M.K., Izadpanah, K., Masenga, V., Milne, R.G., Wolf, Y.I., Koonin, E.V., and Turina, M., Molecular characterization of the plant virus genus Ourmiavirus and evidence of interkingdom reassortment of viral genome segments as its possible route of origin, J. Gen. Virol., 2009, vol. 90, no. 10, pp. 2525–2535. doi 10.1099/vir.0.013086-0CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Donaire, L., Rozas, J., and Ayllon, M.A., Molecular characterization of Botrytis ourmia-like virus, a mycovirus close to the plant pathogenic genus Ourmiavirus, Virology, 2016, vol. 489, pp. 158–164. doi 10.1016/ j.virol.2015.11.027CrossRefPubMedGoogle Scholar
  49. 49.
    Bhatti, M.F., Jamal, A., Petrou, M.A., Cairns, T.C., Bignell, E.M., and Coutts, R.H., The effects of dsRNA mycoviruses on growth and murine virulence of Aspergillus fumigatus, Fungal. Genet. Biol., 2011, vol. 48, no. 11, pp. 1071–1075. doi 10.1016/j.fgb.2011.07.008CrossRefPubMedGoogle Scholar
  50. 50.
    Bruenn, J., The double-stranded RNA viruses of Ustilago maydis and their killer toxins, in dsRNA Genetic Elements, Boca Raton, FL: CRC Press, 2001, pp. 109–124. doi 10.1201/9781420039122.ch4Google Scholar
  51. 51.
    Kang, J., Wu, J., Bruenn, J.A., and Park, C., The H1 double-stranded RNA genome of Ustilago maydis virus-H1 encodes a polyprotein that contains structural motifs for capsid polypeptide, papain-like protease, and RNA-dependent RNA polymerase, Virus Res., 2001, vol. 76, no. 2, pp. 183–189.CrossRefPubMedGoogle Scholar
  52. 52.
    Schmitt, M.J. and Breinig, F., Yeast viral killer toxins: lethality and self-protection, Nat. Rev. Microbiol., 2006, vol. 4, pp. 212–221. doi 10.1038/nrmicro1347CrossRefPubMedGoogle Scholar
  53. 53.
    Tipper, D.J. and Schmitt, M.J., Yeast dsRNA viruses: replication and killer phenotypes, Mol. Microbiol., 1991, vol. 5, no. 10, pp. 2331–2338.CrossRefPubMedGoogle Scholar
  54. 54.
    Chiba, S., Salaipeth, L., Lin, Y.H., Sasaki, A., Kanematsu, S., and Suzuki, N., A novel bipartite double-stranded RNA mycovirus from the white root rot fungus Rosellinia necatrix: molecular and biological characterization, taxonomic considerations, and potential for biological control., J. Virol., 2009, vol. 83, no. 24, pp. 12801–12812. doi 10.1128/JVI.01830-09CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Yu, X., Li, B., Fu, Y., Jiang, D., Ghabrial, S.A., Li, G., Peng, Y., Xie, J., Cheng, J., Huang, J., and Yi, X., A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, no. 18, pp. 8387–8392. doi 10.1073/pnas.0913535107CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Krupovic, M., Ghabrial, S.A., Jiang, D., and Varsani, A., Genomoviridae: a new family of widespread single-stranded DNA viruses, Arch. Virol., 2016, vol. 161, no. 9, pp. 2633–2643. doi 10.1007/s00705-016-2943-3CrossRefPubMedGoogle Scholar
  57. 57.
    Dawe, V.H. and Kuhn, C.W., Isolation and characterization of a double-stranded DNA mycovirus infecting the aquatic fungus, Rhizidiomyces, Virology, 1983, vol. 130, no. 1, pp. 21–28. doi 10.1016/0042-6822(83)90114-9CrossRefPubMedGoogle Scholar
  58. 58.
    Meng, H., Wang, Z., Wang, Y., Zhu, H., and Huang, B., Dicer and Argonaute genes involved in RNA interference in the entomopathogenic fungus Metarhizium robertsii, Appl. Environ. Microbiol., 2017, vol. 83, no. 7. e03230-16. doi 10.1128/AEM.03230-16CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Shabalina, S.A. and Koonin, E.V., Origins and evolution of eukaryotic RNA interference, Trends Ecol. Evol., 2008, vol. 23, no. 10, pp. 578–587. doi 10.1016/j.tree.2008.06.005CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Chang, S.S., Zhang, Z., and Liu, Y., RNA interference pathways in fungi: mechanisms and functions, Annu. Rev. Microbiol., 2012, vol. 66, pp. 305–323. doi 10.1146/annurev-micro-092611-150138CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zhnag, D.X., Spiering, M.J., and Nuss, D.L., Characterizing the roles of Cryphonectria parasitica RNA-dependent RNA polymerase-like genes in antiviral defense, viral recombination and transposon transcript accumulation, PLoS One, 2014, vol. 9, no. 9. e108653. doi 10.1371/journal.pone.0108653CrossRefGoogle Scholar
  62. 62.
    Lee, K.-M., Cho, W.K., Yu, J., Son, M., Choi, H., Min, K., Lee, Y.W., and Kim, K.H., A Comparison of transcriptional patterns and mycological phenotypes following infection of Fusarium graminearum by four mycoviruses, PLoS One, 2014, vol. 9, no. 6. e100989. doi 10.1371/journal.pone.0100989CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Segers, G.C., Zhang, X., Deng, F., Sun, Q., and Nuss, D.L., Evidence that RNA silencing functions as an antiviral defense mechanism in fungi, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 31, pp. 12902–12906. doi 10.1073/pnas.0702500104CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yaegashi, H., Yoshikawa, N., Ito, T., and Kanematsu, S., A mycoreovirus suppresses RNA silencing in the white root rot fungus, Rosellinia necatrix, Virology, 2013, vol. 444, nos. 1–2, pp. 409–416. doi 10.1016/j.virol.2013.07.010CrossRefPubMedGoogle Scholar
  65. 65.
    Biraghi, A., Ulteriori notizie sulla resistenza di Castallea sativa Mill. nei confronti di Endothia parasitica (Murr.) And., Boll. Staz. Patol. Veg., 1954, vol. 9, pp. 149–157.Google Scholar
  66. 66.
    Anagnostakis, S.L., Biological control of chestnut blight, Science, 1982, vol. 215, no. 4532, pp. 466–471. doi 10.1126/science.215.4532.466CrossRefPubMedGoogle Scholar
  67. 67.
    Turchetti, T., Hypovirulence in chestnut blight (Endothia parasitica [Murr.] And.) and some practical aspects in Italy, Eur. J. For. Pathol., 1982, vol. 12, pp. 414–416. doi 10.1111/j.1439-0329.1982.tb01296.xCrossRefGoogle Scholar
  68. 68.
    Rigling, D. and Prospero, S., Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control, Mol. Plant Pathol., 2018, vol. 19, no. 1, pp. 7–20. doi 10.1111/mpp.12542CrossRefPubMedGoogle Scholar
  69. 69.
    Milgroom, M.G. and Cortesi, P., Biological control of chestnut blight with hypovirulence: a critical analysis, Annu. Rev. Phytopathol., 2004, vol. 42, pp. 311–338. doi 10.1146/annurev.phyto.42.040803.140325CrossRefPubMedGoogle Scholar
  70. 70.
    Heiniger, U. and Rigling, D., Biological control of chestnut blight in Europe, Annu. Rev. Phytopathol., 1994, vol. 32, pp. 581–599.CrossRefGoogle Scholar
  71. 71.
    Robin, C., Lanz, S., Soutrenon, A., and Rigling, D., Dominance of natural over released biological control agents of the chestnut blight fungus Cryphonectria parasitica in southeastern France is associated with fitness-related traits, Biol. Control, 2010, vol. 53, no. 1, pp. 55–61.CrossRefGoogle Scholar
  72. 72.
    Robin, C., Anziani, C., and Cortesi, P., Relationship between biological control., incidence of hypovirulence, and diversity of vegetative compatibility types of Cryphonectria parasitica in France, Phytopathology, 2000, vol. 90, no. 7, pp. 730–737. doi 10.1094/ PHYTO.2000.90.7.730CrossRefPubMedGoogle Scholar
  73. 73.
    Juhásová, G. and Bernadovicová, S., Cryphonectria parasitica (Murr.) Barr and Phytophthora spp. in chestnut (Castanea sativa Mill.) in Slovakia, For. Snow Landsc. Res., 2001, vol. 76, no. 3, pp. 373–377.Google Scholar
  74. 74.
    Hoegger, P.J., Heiniger, U., Holdenrieder, O., and Rigling, D., Differential transfer and dissemination of hypovirus and nuclear mitochondrial genomes of a hypovirus-infected Cryphonectria parasitica strain after introduction into a natural population, Appl. Environ. Microbiol., 2003, vol. 69, no. 7, pp. 3767–3771. doi 10.1128/AEM.69.7.3767-3771.2003CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Krstin, L., Katanić, Z., Ježić, M., Poljak, I., Nuskern, L., Matković, I., Idžojtić, M., and Ćurković-Perica, M., Biological control of chestnut blight in Croatia: an interaction between host sweet chestnut, its pathogen Cryphonectria parasitica and the biocontrol agent Cryphonectria hypovirus 1, Pest Manag. Sci., 2017, vol. 73, no. 3, pp. 582–589. doi 10.1002/ps.4335CrossRefPubMedGoogle Scholar
  76. 76.
    Boine, B., Kingston, R.L., and Pearson, M.N., Recombinant expression of the coat protein of Botrytis virus X and development of an immunofluorescence detection method to study its intracellular distribution in Botrytis cinerea, J. Gen. Virol., 2012, vol. 93, no. 11, pp. 2502–2511.CrossRefPubMedGoogle Scholar
  77. 77.
    Whalley, A.J.S., The xylariaceous way of life, Mycol. Res., 1996, vol. 100, no. 8, pp. 897–922. doi.org/ 10.1016/S0953-7562(96)80042-6Google Scholar
  78. 78.
    Kanematsu, S., Arakawa, M., Oikawa, Y., Onoue, M., Osaki, H., Nakamura, H., Ikeda, K., Kuga-Uetake, Y., Nitta, H., Sasaki, A., Suzaki, K., Yoshida, K., and Matsumoto, N., A reovirus causes hypovirulence of Rosellinia necatrix, Phytopathology, 2004, vol. 94, no. 6, pp. 561–568. doi 10.1094/PHYTO.2004.94.6.561CrossRefPubMedGoogle Scholar
  79. 79.
    Chiba, S., Kondo, H., Tani, A., Saisho, D., Sakamoto, W., Kanematsu, S., and Suzuki, N., Widespread endogenization of genome sequences of nonretroviral RNA viruses into plant genomes, PLoS Pathog., 2011, vol. 7, no. 7. e1002146. doi 10.1371/journal.ppat.1002146CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Sasaki, A., Miyanishi, M., Ozaki, K., Onoue, M., and Yoshida, K., Molecular characterization of a partitivirus from the plant pathogenic ascomycete Rosellinia necatrix, Arch. Virol., 2005, vol. 150, pp. 1069–1083. doi 10.1007/s00705-005-0494-0CrossRefPubMedGoogle Scholar
  81. 81.
    Lin, Y.H., Chiba, S., Tani, A., Kondo, H., Sasaki, A., Kanematsu, S., and Suzuki, N., A novel quadripartite dsRNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, Virology, 2012, vol. 426, pp. 42–50. doi 10.1016/j.virol.2012.01.013CrossRefPubMedGoogle Scholar
  82. 82.
    Lin, Y.H., Hisano, S., Yaegashi, H., Kanematsu, S., and Suzuki, N., A second quadrivirus strain from the phytopathogenic filamentous fungus Rosellinia necatrix, Arch. Virol., 2013, vol. 158, pp. 1093–1098. doi 10.1007/s00705-012-1580-8CrossRefPubMedGoogle Scholar
  83. 83.
    Wei, C.Z., Osaki, H., Iwanami, T., Matsumoto, N., and Ohtsu, Y., Complete nucleotide sequences of genome segments 1 and 3 of Rosellinia anti-rot virus in the family Reoviridae, Arch. Virol., 2004, vol. 149, no. 4, pp. 773–777.CrossRefPubMedGoogle Scholar
  84. 84.
    Kondo, H., Kanematsu, S., and Suzuki, N., Viruses of the white root rot fungus, Rosellinia necatrix, Adv. Virus Res., 2013, vol. 86, pp. 177–214. doi 10.1016/B978-0-12-394315-6.00007-6CrossRefPubMedGoogle Scholar
  85. 85.
    Coley-Smith, J.R., Verhoeff, K., and Jarvis, W.R., The Biology of Botrytis, London: Academic Press, 1980.Google Scholar
  86. 86.
    Fravel, D.R., Commercialization and implementation of biocontrol, Annu. Rev. Phytopathol., 2005, vol. 43, pp. 337–359. doi 10.1146/annurev.phyto.43.032904.092924Google Scholar
  87. 87.
    Castro, M., Kramer, K., Valdivia, L., Ortiz, S., and Castillo, A., A double-stranded RNA mycovirus confers hypovirulence-associated traits to Botrytis cinerea, FEMS Microbiol. Lett., 2003, vol. 228, no. 1, pp. 87–91.CrossRefPubMedGoogle Scholar
  88. 88.
    Rodríguez-García, C., Medina, V., Alonso, A., and Ayllon, M.A., Mycoviruses of Botrytis cinerea isolates from different hosts, Ann. Appl. Biol., 2013, vol. 164, pp. 46–61. doi 10.1111/aab.12073CrossRefGoogle Scholar
  89. 89.
    Vilches, S. and Castillo, A., A double-stranded RNA mycovirus in Botrytis cinerea, FEMS Microbiol. Lett., 1997, vol. 155, no. 1, pp. 125–130.CrossRefPubMedGoogle Scholar
  90. 90.
    Yu, L., Sang, W., Wu, M.D., Zhang, J., Yang, L., Zhou, Y.J., Chen, W.D., and Li, G.Q., Novel hypovirulence-associated RNA mycovirus in the plant-pathogenic fungus Botrytis cinerea: molecular and biological characterization, Appl. Environ. Microbiol., 2015, vol. 81, no. 7, pp. 2299–2310. doi 10.1128/AEM.03992-14CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Cho, W.K., Lee, K.M., Yu, J., Son, M., and Kim, K.H., Insight into mycoviruses infecting Fusarium species, Adv. Virus. Res., 2013, vol. 86, pp. 273–288. doi 10.1016/B978-0-12-394315-6.00010-6CrossRefPubMedGoogle Scholar
  92. 92.
    Marvelli, R.A., Hobbs, H.A., Li, S., McCoppin, N.K., Domier, L.L., Hartman, G.L., and Eastburn, D.M., Identification of novel double-stranded RNA mycoviruses of Fusarium virguliforme and evidence of their effects on virulence, Arch. Virol., 2014, vol. 159, no. 2, pp. 349–352. doi 10.1007/s00705-013-1760-1CrossRefPubMedGoogle Scholar
  93. 93.
    Kwon, S.J., Lim, W.S., Park, S.H., Park, M.R., and Kim, K.H., Molecular characterization of a dsRNA mycovirus, Fusarium graminearum virus-DK21, which is phylogenetically related to hypoviruses but has a genome organization and gene expression strategy resembling those of plant potex-like viruses, Mol. Cells, 2007, vol. 23, no. 3, pp. 304–315.PubMedGoogle Scholar
  94. 94.
    Wang, S., Kondo, H., Liu, L., Guo, L., and Qiu, D., A novel virus in the family Hypoviridae from the plant pathogenic fungus Fusarium graminearum, Virus Res., 2013, vol. 174, nos. 1–2, pp. 69–77. doi 10.1016/ j.virusres.2013.03.002CrossRefPubMedGoogle Scholar
  95. 95.
    Dyakov, Yu.T., Shnyriova, A.V., and Sergeev, A.Yu., Introduction to the Genetics of Fungi, Moscow: Academia, 2005.Google Scholar
  96. 96.
    Madhosingh, C., Production of intraspecific hybrids of Fusarium oxysporum f.sp. radicis-lycopersici and Fusarium oxysporum f.sp. lycopersici by protoplast fusions, J. Phytopathol., 1994, vol. 142, nos. 3–4, pp. 301–309. doi 10.1111/j.1439-0434.1994.tb00026.xGoogle Scholar
  97. 97.
    van Diepeningen, A.D., Debets, A.J.M., and Hoekstra, R.F., Intra- and interspecies virus transfer in Aspergilli via protoplast fusion, Fungal Genet. Biol., 1998, vol. 25, pp. 171–180. doi.org/10.1006/fgbi.1998.1096Google Scholar
  98. 98.
    Lakhani, H.N., Vakharia, D.N., Makhlouf, A.H., Eissa, R.A., and Hassan, M.M., Influence of protoplast fusion in Trichoderma spp. on controlling some soil borne diseases, J. Plant Pathol. Microbiol., 2016, vol. 7, no. 8, p. 370. doi 10.4172/2157-7471.1000370CrossRefGoogle Scholar
  99. 99.
    Kanematsu, S., Sasaki, A., Onoue, M., Oikawa, Y., and Ito, T., Extending the fungal host range of a partitivirus and a mycoreovirus from Rosellinia necatrix by inoculation of protoplasts with virus particles, Phytopathology, 2010, vol. 100, no. 3, pp. 922–930. doi 10.1094/PHYTO-100-9-0922CrossRefPubMedGoogle Scholar
  100. 100.
    Wang, S., Ongena, M., Qiu, D., and Guo, L., Fungal viruses: promising open fundamental research and biological control agents of fungi, SM Virol., 2017, vol. 2, no. 1, p. 1011.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of UkraineKyivUkraine
  2. 2.INRS-Institut Armand-FrappierLavalQuebecCanada

Personalised recommendations