Cytology and Genetics

, Volume 52, Issue 5, pp 343–352 | Cite as

Effects of the Ppd-D1a Allele on Growth Rates and Agronomical Traits in Wheat Detected by the Application of Analogous Lines

  • A. O. BakumaEmail author
  • Yu. A. PopovychEmail author
  • I. I. MotsnyiEmail author
  • G. O. ChebotarEmail author
  • S. V. ChebotarEmail author


The characteristics of agronomic traits in the analogue lines of the Kooperatorka and Stepnyak bread wheat cultivars, in which alleles of the photoperiod sensitivity genes were identified by PCR, were studied. The level of recovery of the recurrent genetic background has been identified in the analogue lines, and the allelic state of the Rht8 dwarfing gene has been identified. The effect of the Ppd-D1a allele on the agronomic traits and growth rates of analogue lines, irrespective of other genetic systems, has been established, using the methods of dispersion and discriminant analyses. Differences in the results obtained by these two methods are explained by including intertrait correlations into the discriminant analysis. It has been shown that the most informative traits for discriminating between the lines were the date of heading and the plant height.


bread wheat PCR analysis analogue lines photoperiod sensitivity genes Ppd-D1 agronomic traits 



  1. 1.
    Skripchinsky, V.V., Photoperiodism Is Its Origin and Evolution, London: Science, 1971.Google Scholar
  2. 2.
    Law, C.N., Sutka, J., and Worland, A.J., A genetic study of day-length response in wheat, Heredity, 1978, vol. 41, no. 2, pp. 185–191.CrossRefGoogle Scholar
  3. 3.
    Scarth, R. and Law, C.N., The location of the photoperiod gene, Ppd2 and an additional genetic factor for ear-emergence time on chromosome 2B of wheat, Heredity, 1983, vol. 51, no. 3, pp. 607–619. articles/hdy198373.pdf?origin=ppub.CrossRefGoogle Scholar
  4. 4.
    Mokanu, N.V. and Fayt, V.I., Differences in the effects of alleles of the genes Vrd1 and Ppd-D1 with respect to winter hardiness, frost tolerance and yield in winter wheat, Cytol. Genet., 2008, vol. 42, no. 6, pp. 384–390. Scholar
  5. 5.
    Fait, V.I., Fedorova, V.R., Balashova, I.A., and Stel’makh, A.F., Time to ear emergence and test for allelism of Ppd lines of different origin, Cytol. Genet., 2006, vol. 40, no. 1, pp. 20–28.Google Scholar
  6. 6.
    Bentley, A.R., Horsnell, R., Werner, C.P., Turner, A.S., Rose, G.A., Bedard, C., Howell, P., Wilhelm, E.P., Mackay, I.J., Howells, R.M., Greenland, A., Laurie, D.A., and Gosman, N., Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different Photoperiod-1 (Ppd-1) alleles, J. Exp. Bot., 2013, vol. 64, no. 7, pp. 1783–1793. doi 10.1093/jxb/ert038CrossRefPubMedGoogle Scholar
  7. 7.
    Kiseleva, A.A., Eggi, E.E., Koshkin, V.A., Sitnikov, M.N., Roder, M., Salina, E.A., and Potokina, E.K., Detection of genetic determinants that define the difference in photoperiod sensitivity of Triticum aestivum L. near-isogenic lines, Russ. J. Genet., 2014, vol. 50, no. 7, pp. 701–711.CrossRefGoogle Scholar
  8. 8.
    Fayt, V.I. and Fedorova, V.R., Influence of differences in Ppd genes on agronomic indicators of soft winter wheat, Cytol. Genet., 2007, vol. 41, no. 6, pp. 350–356.CrossRefGoogle Scholar
  9. 9.
    Dauletbaeva, S.B. and Shulembaeva, K.K., Development of near isogenic lines bread wheat (Triticum aestivum L.) of cultivar Kazakhstanskaya 126, Morphol. Product., 2007, no 3, pp. 33–38.Google Scholar
  10. 10.
    Chebotar, G.A., Motsnyy, I.I., Chebotar, S.V., and Sivolap, Yu.M., Effects of dwarfing genes on the genetic background of wheat varieties in Southern Ukraine, Cytol. Genet., 2012, vol. 46, no. 6, pp. 366–372.CrossRefGoogle Scholar
  11. 11.
    Rokitsky, P.F., Biological Statistics, Minsk: Vysheishaya Shkola, 1973.Google Scholar
  12. 12.
    Fukunaga, K., Vvedenie v statisticheskuyu teoriyu raspoznavaniya obrazov (Introduction to Statistical Pattern Recognition Theory), Moscow: Nauka, 1979.Google Scholar
  13. 13.
    Doyle, J., DNA protocols for plants, in Molecular Techniques in Taxonomy, Hewitt, G.M., Johnston, A.W.B., and Young, J.P.W., Eds., NATO ASI Series (Series H: Cell Biology), 1991, vol. 57, pp. 283–293.Google Scholar
  14. 14.
    Beales, J., Turner, A., Griffiths, S., Snape, J.W., and Laurie, D.A., A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.), Theor. Appl. Genet., 2007, vol. 115, no. 5, pp. 721–733.CrossRefPubMedGoogle Scholar
  15. 15.
    Nishida, H., Yoshida, T., Kawakami, K., Fujita, M., Long, B.Y., Akashi, Laurie, D.A., and Kato, K., Structural variation in the 5' upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time, Mol. Breed., 2013, vol. 31, no. 1, pp. 27–37. doi 10.1007/s11032-012-9765-0CrossRefGoogle Scholar
  16. 16.
    Seki, M., Chono, M., Matsunaka, H., Fujita, M., Oda, S., Kubo, K., Kiribuchi-Otobe, C., Kojima, H., Nishida, H., and Kato, K., Distribution of photoperiod-insensitive alleles Ppd-B1a and Ppd-D1a and their effect on heading time in Japanese wheat cultivars, Breed. Sci., 2011, vol. 61, no. 4, pp. 405–412. doi 10.1270/jsbbs.61.405CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Worland, A.J., Sayers, E.J., and Korzun, V., Allelic variation at the dwarfing gene Rht8 locus and its significance in international breeding programmes, Euphytica, 2001, vol. 119, nos. 1–2, pp. 157–161.CrossRefGoogle Scholar
  18. 18.
    Roder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.-H., Leroy, P., and Ganal, M.W., Microsatellite map of wheat, Genetics, 1998, vol. 149, no. 4, pp. 2007–2023.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kalendar, R. and Schulman, A.H., IRAP and REMAP for retrotransposon-based genotyping and fingerprinting, Nat. Protoc., 2006, vol. 5, no. 1, pp. 2478–2484. doi 10.1038/nprot.2006.377CrossRefGoogle Scholar
  20. 20.
    Bassam, B.J. and Gresshoff, P.M., Silver staining DNA in polyacrylamide gels, Nat. Protoc., 2007, vol. 2, no. 11, pp. 2649–2654.CrossRefPubMedGoogle Scholar
  21. 21.
    Motsnyi, I.I., Chebotar, G.A., Fayt, V.I., Chebotar, S.V., Pogrebnyuk, E.A., and Kulbida, M.P., Discrimination and characteristics on biological and agronomical traits of lines of Stepnyak bread wheat cultivar, News Agrar. Sci., 2013, no. 5, pp. 49–53.Google Scholar
  22. 22.
    Matsuyama, H., Fujita, M., Seki, M., Kojima, H., Shimazaki, Y., Matsunaka, H., Chono, M., Hatta, K., Kubo, K., Takayama, T., Kiribuchi-Otobe, C., Oda, S., Watanabe, Y., and Kato, K., Growth and yield properties of near-isogenic wheat lines carrying different photoperiodic response genes, Plant Prod. Sci., 2015, vol. 18, no. 1, pp. 57–68.CrossRefGoogle Scholar
  23. 23.
    Worland, A.J., Appendino, M.L., and Sayers, E.J., The distribution, in European winter wheats, of genes that influence ecoclimatic adaptability whilst determining photoperiodic insensitivity and plant height, Euphytica, 1994, vol. 80, no. 3, pp. 219–228.CrossRefGoogle Scholar
  24. 24.
    Worland, A.J., Korzun, V., Roder, M.S., Ganal, M.W., and Law, C.N., Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening, Theor. Appl. Genet., 1998, vol. 96, no. 8, pp. 1110–1120.CrossRefGoogle Scholar
  25. 25.
    Foulkes, M.J., Sylvester-Bradley, R., Worland, A.J., and Snape, J.W., Effects of a photoperiod-response gene Ppd-D1 on yield potential and drought resistance in UK winter wheat, Euphytica, 2004, vol. 135, no. 1, pp. 63–73.CrossRefGoogle Scholar
  26. 26.
    Worland, A.J. and Law, C.N., Genetic analysis of chromosome 2D of wheat. I. The location of genes affecting height, day-length insensitivity, hybrid dwarfism and yellow-rust resistance, Z. Pfhanzenzüchtung, 1986, vol. 96, no. 4, pp. 331–345.Google Scholar
  27. 27.
    Börner, A., Worland, A.J., Plaschke, J., Schumann, E., and Law, C.N., Pleiotropic effects of genes for reduced height (Rht) and day-length insensitivity (Ppd) on yield and its components for wheat grown in middle Europe, Plant Breed., 1993, vol. 111, no. 3, pp. 204–216. doi.rg/10.1111/j.1439-0523.1993.tb00631CrossRefGoogle Scholar
  28. 28.
    Pestsova, E.G., Korzun, V., and Roder, M.S., Pedigree analysis of wheat chromosome 2D, in Proceedings of the 12th International EWAC Workshop 1–6 July 2002, Norwich, UK, pp. 122–124.Google Scholar
  29. 29.
    Chebotar, G.A., Motsnyy, I.I., Chebotar, S.V., and Sivolap, Yu.M., Effects of dwarfing genes on the genetic background of wheat varieties in Southern Ukraine, Cytol. Genet., 2012, vol. 46, no. 6, pp. 366–372.CrossRefGoogle Scholar
  30. 30.
    Chebotar, G.A., Chebotar, S.V., and Motsnyy, I.I., Pleiotropic effects of gibberellin-sensitive and gibberellin-insensitive dwarfing genes in bread wheat of the southern step region of the Black Sea, Cytol. Genet., 2016, vol. 50, no. 1, pp. 20–27.CrossRefGoogle Scholar
  31. 31.
    Langer, S., Friedrich, M., Longin, C.H., and Würschum, T., Flowering time control in European winter wheat, Front. Plant Sci., 2014, vol. 5, pp. 1–11. Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Odessa I.I. Mechnikov National UniversityOdessaUkraine
  2. 2.Plant Breeding and Genetics Institute—National Center of Seed and Cultivar InvestigationsOdessaUkraine

Personalised recommendations