Cytology and Genetics

, Volume 52, Issue 2, pp 155–160 | Cite as

Patterns of Allelic Diversity in Spring Wheat Populations by SSR-Markers

  • Muhammad Sajjad
  • Sultan Habibullah Khan
  • Munawar Shahzad
Article
  • 10 Downloads

Abstract

Precise assessment of diversity in available breeding germplasm helps to preempt epidemics and abrupt environmental changes. Spring wheat germplasm consisting of 84 accessions including cultivars, breeding lines and landraces from various origins was scanned with 44 SSRs. For allele frequencies, allelic patterns, heterozygosity and polymorphism the selected population was divided in three subpopulations: (i) pre-green revolution (pre-1965), (ii) post-green revolution (post-1965), (iii) post-veery (post-2000). Alleles produced in pre-1965, post-1965 and post-2000 subpopulations were 115, 144 and 131, respectively. Mean PIC values for pre-1965, post-1965 and post-2000 subpopulations were 0.48, 0.52 and 051, respectively. Allelic patterns showed no locally common alleles in any of the subpopulation. The pre-1965 subpopulation had also no private allele, however, average number of private alleles decreased from post-1965 to post-2000 subpopulation. In case of effective alleles and Shannon’s information index trend was increasing from pre-1965 to post-1965 and then decreasing from post-1965 to post-2000. The decreasing trend alarms the reduced genetic diversity in wheat varieties developed after 2000. PCA and cluster analysis didn’t clearly differentiated subpopulations, though pre-1965 genotypes showed higher genetic distance from post-1965 and post-2000 subpopulations. The decreasing measures of genetic diversity in post-2000 wheat genotypes should be a concern for wheat breeders, therefore, all sources of broadening genetic diversity should be exploited.

Keywords

wheat genetic diversity SSR allelic patterns 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reif, J.C., Zhang, E.P., Dreisigacker, S., Warburton, M.L., van Ginkel, M., Hoisington, D., Bohn, M., and Melchinger, A.E., Wheat genetic diversity trends during domestication and breeding, Theor. Appl. Genet., 2005, vol. 110, pp. 859–864.CrossRefPubMedGoogle Scholar
  2. 2.
    Dalrymple, D.G., Development and Spread of High-Yielding Wheat Varieties in Developing Countries, 7th ed., Washington: US Agency for International Development, 1986.Google Scholar
  3. 3.
    Singh, R.P., Hodson, D.P., Espino, J.H., Jin, Y., Njau, P., Wanyera, R., Foessel, S.A.H., and Ward, R.W., Will stem rust destroy the world’s wheat crop?, Advan. Agron., 2008, vol. 98, pp. 271–309.CrossRefGoogle Scholar
  4. 4.
    Smale, M., Reynolds, M.P., Warburton, M., Skovmand, B., Trethowan, R., Singh, R.P., Ortiz-Monasterio, I., and Crossa, J., Dimensions of diversity in modern spring bread wheat in developing countries from 1965, Crop Sci., 2002, vol. 42, p. 1766.CrossRefGoogle Scholar
  5. 5.
    Sajjad, M., Khan, S.H., and Maqbool, R., Pedigree and SSR data analysis reveal dominant prevalence of few parents in pedigrees of Pakistani wheat varieties, Amer. J. Mol. Biol., 2015, vol. 5, pp. 1–6.CrossRefGoogle Scholar
  6. 6.
    Sajjad, M., Khan, S.H., Ahmad, M.Q., Rasheed, A., Mujeeb-Kazi, A., and Khan, I.A., Association mapping identifies QTLs on wheat chromosome 3A for yield related traits, Cereal Res. Commun., 2014, vol. 42, pp. 177–188.CrossRefGoogle Scholar
  7. 7.
    Sajjad, M., Khan, S.H., and Khan, A.S., Exploitation of germplasm for grain yield improvement in spring wheat (Triticum aestivum), Int. J. Agric. Biol., 2011, vol. 13, pp. 695–700.Google Scholar
  8. 8.
    Ahmad, M.Q., Khan, S.H., Sajjad, M., and Khan, I.A., Analysis of drought responsive traits in hexaploid wheat (Triticum aestivum L.), Pak. J. Agric. Sci., 2015, vol. 52, no. 3, pp. 701–707.Google Scholar
  9. 9.
    Rehman, A., Sajjad, M., Khan, S.H., Pena Bautista, R.J., and Khan, N.I., Lower tendency of allelic variation of Glu genes and absence of 1BL–1RS translocation in modern Pakistani wheats, Cereal Res. Commun., 2014, vol. 42, pp. 139–150.Google Scholar
  10. 10.
    Rogowsky, P.M., Guidet, F.L., Langridge, P., Shepherd, K.W., and Koebner, R.D., Isolation and characterization of wheat–rye recombinants involving chromosome arm 1DS of wheat, Theor. Appl. Genet., 1991, vol. 82, pp. 537–544.CrossRefPubMedGoogle Scholar
  11. 11.
    Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D., and Sorrells, M.E., Optimising parental selection for genetic linkage maps, Genome, 1993, vol. 36.Google Scholar
  12. 12.
    Peakall, R. and Smouse, P.E., GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, vol. 6, pp. 288–295.CrossRefGoogle Scholar
  13. 13.
    Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update, Bioinformatics, 2012, vol. 28, pp. 2537–2539.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Thomas, J. and Michael, P., Statistica, Encyclopedia of Research Design, Salkind N., Ed., Thousand Oaks, 2010, pp. 1443–1445.Google Scholar
  15. 15.
    Liu, L., Wang, L., Yao, J., Zheng, Y., and Zhao, C., Association mapping of six agronomic traits on chromosome 4A of wheat (Triticum aestivum L.), Mol. Plant Breed., 2010, vol. 1, no. 5. doi 10.5376/mpb.2010.01.0005Google Scholar
  16. 16.
    Yao, J., Wang, L., Liu, L., Zhao, C., and Zheng, Y., Association mapping of agronomic traits on chromosome 2A of wheat, Genetics, 2009, vol. 137, pp. 67–75.Google Scholar
  17. 17.
    Breseghello, F. and Sorrells, M.E., Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars, Genetics, 2006, vol. 172, pp. 1165–1177.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shahzad, M., Khan, S.H., Khan, A.S., Sajjad, M., Rehman, A., and Khan, A.I., Identification of QTLs on chromosome 1b for grain quality traits in bread wheat (Triticum aestivum L.), Cytol. Genet., 2016, vol. 50, no. 2, pp. 89–95.CrossRefGoogle Scholar
  19. 19.
    Huang, Q., Borner, A., Roder, M.S., and Ganal, M., Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers, Theor. Appl. Genet., 2002, vol. 105, pp. 699–707.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang, H., Wang, X., Chen, P., and Liu, D., Assessment of genetic diversity of Yunnan, Tibetan, and Xinjiang wheat using SSR markers, J. Genet. Genom., 2007, vol. 34, pp. 623–633.CrossRefGoogle Scholar
  21. 21.
    Prasad, M., Varshney, R.K., Roy, J.K., Balyan, H.S., and Gupta, P.K., The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat, Theor. Appl. Genet., 2000, vol. 100, pp. 584–592.Google Scholar
  22. 22.
    Medini, M., Hamza, S., Rebai, A., and Baum, M., Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers, Genet. Res. Crop Evol., 2005, vol. 52, no. 1, pp. 21–31.CrossRefGoogle Scholar
  23. 23.
    Roder, M.S., Wendehake, K., Korzum, V., Bredemeijer, G., Laborie, D., Bertand, L., Issac, P., Rendell, S., Jackson, J., Cooke, R.J., Vosman, B., and Ganal, M.W., Construction and analysis of a microsatellite-based database of European wheat varieties, Theor. Appl. Genet., 2002, vol. 106, pp. 67–73.CrossRefPubMedGoogle Scholar
  24. 24.
    Yang, X., Xu, Y., Shah, T., Li, H., Han, Z., Li, J., and Yan, J., Comparison of SSRs and SNPs in assessment of genetic relatedness in maize, Genetics, 2011, vol. 139, pp. 1045–1054.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Muhammad Sajjad
    • 1
  • Sultan Habibullah Khan
    • 2
  • Munawar Shahzad
    • 3
  1. 1.Department of Environmental SciencesCOMSATS Institute of Information TechnologyVehariPakistan
  2. 2.Center for Agricultural Biochemistry and Biotechnology (CABB)University of AgricultureFaisalabadPakistan
  3. 3.Agricultural Biotechnological DivisionNational Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan

Personalised recommendations