Advertisement

Moscow University Physics Bulletin

, Volume 74, Issue 2, pp 205–211 | Cite as

An Asymptotically Optimal Algorithm for the Search for and Evaluation of the Slichter Mode from Long-Term Strain Data

  • M. P. Vinogradov
  • V. K. MilyukovEmail author
  • A. P. Mironov
  • A. V. Myasnikov
Physics of Earth, Atmosphere, and Hydrosphere

Abstract

The Slichter mode (1S1) is the longest-period mode of Earth’s free oscillations. The period of this mode depends on the difference between the densities of the outer liquid and inner solid cores, thus making its detection very important for the refinement of models of the Earth. Despite numerous attempts at detecting this mode with the use of a network of superconducting gravimeters, there currently is no confirmed experimental data on the observation of the Slichter mode due to its small amplitude on the surface. In this work, it is proposed to detect the Slichter mode using the data from the laser interferometer-strainmeter of the Sternberg State Astronomical Institute of the Moscow State University (Northern Caucasus) with a measuring arm length of 75 m. For this purpose, an asymptotically optimal algorithm was developed for the analysis of data with consideration for their statistical properties, and the processing of synthetic data was modeled to estimate the magnitude of the possible observed effect and the detection indicators.

Keywords

Earth’s free oscillations Slichter mode deformation modeling asymptotically optimal algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Dahlen and J. Tromp, Theoretical Global Seismology (Princeton Univ. Press, Princeton, 1998).Google Scholar
  2. 2.
    L. B. Slichter, Proc. Natl. Acad. Sci. U.S.A. 47, 186 (1961). doi  https://doi.org/10.1073/pnas.47.2.186 CrossRefGoogle Scholar
  3. 3.
    F. H. Busse, J. Geophys. Res. 79, 753 (1974). doi  https://doi.org/10.1029/JB079i005p00753 CrossRefGoogle Scholar
  4. 4.
    S. Rosat and Y. Rogister, Phys. Earth Planet. Inter. 190–191, 25 (2012). doi  https://doi.org/10.1016/j.pepi.2011.10.007 CrossRefGoogle Scholar
  5. 5.
    D. Crossley and J. Hinderer, J. Geodyn. 48, 299 (2009). doi  https://doi.org/10.1016/j.jog.2009.09.019 CrossRefGoogle Scholar
  6. 6.
    J. Hinderer, D. Crossley, and O. Jensen, Phys. Earth Planet. Inter. 90, 183 (1995). doi  https://doi.org/10.1016/0031-9201(95)05083-N CrossRefGoogle Scholar
  7. 7.
    O. G. Jensen, J. Hinderer, and D. J. Crossley, Phys. Earth Planet. Inter. 90, 169 (1995). doi  https://doi.org/10.1016/0031-9201(95)05082-M CrossRefGoogle Scholar
  8. 8.
    S. Rosat, J. Hinderer, D. J. Crossley, et al., Phys. Earth Planet. Inter. 140, 183 (2003). doi  https://doi.org/10.1016/j.pepi.2003.07.010 CrossRefGoogle Scholar
  9. 9.
    S. Rosat, Y. Rogister, D. Crossley, et al., J. Geodyn. 41, 296 (2006). doi  https://doi.org/10.1016/j.jog.2005.08.033 CrossRefGoogle Scholar
  10. 10.
    S. Rosat, in Dynamic Planet, Ed. by P. Tregoning and C. Rizos (Springer, 2007), p. 571. doi  https://doi.org/10.1007/978-3-540-49350-1_83
  11. 11.
    S. Rosat, P. Sailhac, and P. Gegout, Geophys. J. Int. 171, 55 (2007). doi  https://doi.org/10.1111/j.1365-246X.2007.03533.x CrossRefGoogle Scholar
  12. 12.
    D. E. Smylie, Science 255, 1678 (1992). doi  https://doi.org/10.1126/science.255.5052.1678 CrossRefGoogle Scholar
  13. 13.
    J. Y. Guo, O. Dierks, J. Neumeyer, et al., Geophys. J. Int. 168, 507 (2007). doi  https://doi.org/10.1111/j.1365-246X.2006.03245.x CrossRefGoogle Scholar
  14. 14.
    W. B. Shen and H. Ding, J. Earth Sci. 24, 725 (2013). doi  https://doi.org/10.1007/s12583-013-0369-3 CrossRefGoogle Scholar
  15. 15.
    H. Ding and B. F. Chao, J. Geophys. Res.: Solid Earth 120, 7261 (2015). doi  https://doi.org/10.1002/2015JB012203 CrossRefGoogle Scholar
  16. 16.
    Y. Jiang, J. Xu, and H. Sun, J. Earth Sci. 24, 750 (2013). doi  https://doi.org/10.1007/s12583-013-0370-x CrossRefGoogle Scholar
  17. 17.
    V. K. Milyukov, B. S. Klyachko, A. V. Myasnikov, P. S. Striganov, A. F. Yanin, and A. N. Vlasov, Instrum. Exp. Tech. 48, 780 (2005). doi  https://doi.org/10.1007/s10786-005-0140-9 CrossRefGoogle Scholar
  18. 18.
    V. K. Milyukov, Izv., Phys. Solid Earth 41, 267 (2005).Google Scholar
  19. 19.
    V. K. Milyukov, M.P. Vinogradov, A. P. Mironov, A. V. Myasnikov, and N. A. Perelygin, Izv., Phys. Solid Earth 51, 176 (2015). doi  https://doi.org/10.1134/S1069351315010097 CrossRefGoogle Scholar
  20. 20.
    Yu. G. Sosulin, Theoretical Foundations of Radio Detection and Navigation (Radio i Svyaz’, Moscow, 1992).Google Scholar
  21. 21.
    P. S. Akimov, P. A. Bakut, V. A. Bogdanovich, et al., Theory of Signal Detection (Radio i Svyaz’, Moscow, 1984).Google Scholar
  22. 22.
    V. K. Milyukov, M.P. Vinogradov, A. P. Mironov, et al., Geophys. Res. Abstr. 20, EGU2018–3964 (2018).Google Scholar
  23. 23.
    G. A. Korn and T. M. Korn, Mathematics Handbook for Scientists and Engineers (Nauka, Moscow, 1974).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. P. Vinogradov
    • 1
  • V. K. Milyukov
    • 1
    Email author
  • A. P. Mironov
    • 1
  • A. V. Myasnikov
    • 1
  1. 1.Sternberg State Astronomical InstituteMoscow State UniversityMoscowRussia

Personalised recommendations