Advertisement

Moscow University Physics Bulletin

, Volume 74, Issue 2, pp 165–170 | Cite as

Single-Electron Structures Based on Solitary Dopant Atoms of Arsenic, Phosphorus, Gold, and Potassium in Silicon

  • D. E. PresnovEmail author
  • S. A. Dagesyan
  • I. V. Bozhev
  • V. V. Shorokhov
  • A. S. Trifonov
  • A. A. Shemukhin
  • I. V. Sapkov
  • I. G. Prokhorova
  • O. V. Snigirev
  • V. A. KrupeninEmail author
Physics of Condensed State of Matter
  • 6 Downloads

Abstract

Here we present CMOS compatible fabrication methods and the results of an experimental study of single-atom single-electron transistors made from silicon on insulator and based on various dopant atoms. Transistors with channels doped with arsenic (As), phosphorus (P), gold (Au) and potassium (K) atoms were fabricated and studied. Two methods for fabricating of experimental transistor structures are presented. The first method (As, P transistors) used a inhomogeneously doped in depth silicon layer and controlled reduction of the size of the transistor channel in several cycles of isotropic reactive-ion etching. The second method (Au and K transistors) used an undoped silicon layer and the subsequent implantation of dopant atoms into a preformed transistor channel. Dopant electron and hole levels of Au and K atoms in silicon are located near the middle of the silicon band gap, which provides a small effective size of the dopant charge center and, as a result, a high value of the charge energy and operating temperature of the transistor compared to the traditional dopants (P, As, Sb, B). The values of the charge energy of the Au and K transistors, which were estimated from the measurements (Ec ≥ 150 meV), are much higher than those of the As and P transistors (Ec < 30 meV). Important advantages of the proposed methods are: controlled implantation of various impurities and possibility to combine etching and implantation cycles during sample preparation.

Keywords

single-electron transistor single-atom transistor Au dopant K dopant silicon-on-insulator nanobridge nanowire 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The equipment of the “Educational and Methodical Center of Lithography and Microscopy,” Moscow State University, was used. We are very grateful to S. Bauerdick, P. Mazarov, A. Nadzeyka, and A. Rudzinski (Raith GmbH) and V. Vlasenko (OPTEC LLC) for providing the unique ionLINE system for ion implantation.

References

  1. 1.
    G. Lovat, B. Choi, D. W. Paley, et al., Nat. Nanotechnol. 12, 1050 (2017).CrossRefGoogle Scholar
  2. 2.
    S. J. Shin, J. J. Lee, H. J. Kang, et al., Nano Lett. 11, 1591 (2011).CrossRefGoogle Scholar
  3. 3.
    B. E. Kane, Nature 393, 133 (1998).CrossRefGoogle Scholar
  4. 4.
    J. J. Pla, K. Y. Tan, J. P. Dehollain, et al., Nature 489, 541 (2012).CrossRefGoogle Scholar
  5. 5.
    M. Fuechsle, J. A. Miwa, S. Mahapatra, et al., Nat. Nanotechnol. 7, 242 (2012).CrossRefGoogle Scholar
  6. 6.
    M. Veldhorst, C. H. Yang, J. C. C. Hwang, et al., Nature 526, 410 (2015).CrossRefGoogle Scholar
  7. 7.
    G. Yamahata, K. Nishiguchi, and A. Fujiwara, Nat. Commun. 5, 5038 (2014).CrossRefGoogle Scholar
  8. 8.
    G. C. Tettamanzi, R. Wacquez, and S. Rogge, New J. Phys. 16, 063036 (2014).CrossRefGoogle Scholar
  9. 9.
    H. Sellier, G. P. Lansbergen, J. Caro, et al., Phys. Rev. Lett. 97, 206805 (2006).CrossRefGoogle Scholar
  10. 10.
    G. P. Lansbergen, R. Rahman, C. J. Wellard, et al., Nat. Phys. 4, 656 (2008).CrossRefGoogle Scholar
  11. 11.
    M. Pierre, R. Wacquez, X. Jehl, et al., Nat. Nanotechnol. 5, 133 (2010).CrossRefGoogle Scholar
  12. 12.
    K. Y. Tan, K. W. Chan, M. Mottonen, et al., Nano Lett. 10, 11 (2010).CrossRefGoogle Scholar
  13. 13.
    E. Prati, M. De Michielis, M. Belli, et al., Nanotechnology 23, 215204 (2012).CrossRefGoogle Scholar
  14. 14.
    D. Moraru, A. Samanta, T. Mizuno, H. Mizuta, and M. Tabe, Nano Lett. 4, 6219 (2014).Google Scholar
  15. 15.
    J. A. Miwa, J. A. Mol, J. Salfi, S. Rogge, and M. Y. Simmons, Appl. Phys. Lett. 103, 043106 (2013).CrossRefGoogle Scholar
  16. 16.
    B. Voisin, J. Salfi, J. Bocquel, R. Rahman, and S. Rogge, J. Phys.: Condens. Matter 27, 154203 (2015).Google Scholar
  17. 17.
    A. S. Trifonov, D. E. Presnov, I. V. Bozhev, et al., Ultramicroscopy 179, 33 (2017).CrossRefGoogle Scholar
  18. 18.
    D. E. Presnov, I. V. Bozhev, A. V. Miakonkikh, et al., J. Appl. Phys. 123, 054503 (2018).CrossRefGoogle Scholar
  19. 19.
    E. Prati, R. Latempa, and M. Fanciulli, Phys. Rev. B 80, 165331 (2009).CrossRefGoogle Scholar
  20. 20.
    M. Gasseller, M. DeNinno, R. Loo, et al., Nano Lett. 11, 5208 (2011).CrossRefGoogle Scholar
  21. 21.
    S. J. Hile, M. G. House, E. Peretz, et al., Appl. Phys. Lett. 107, 093504 (2015).CrossRefGoogle Scholar
  22. 22.
    A. Zhang, G. Zheng, and C. M. Lieber, Nanowires. Building Blocks for Nanoscience and Technology (Springer, Cham, 2016), p. 307.Google Scholar
  23. 23.
    M. Yu. Rubtsova, G. V. Presnova, V. A. Krupenin, et al., Proc. Technol. 27, 234 (2016).CrossRefGoogle Scholar
  24. 24.
    V. V. Shorokhov, D. E. Presnov, S. V. Amitonov, et al., Nanoscale 9, 613 (2017).CrossRefGoogle Scholar
  25. 25.
    S. A. Dagesyan, V. V. Shorokhov, D. E. Presnov, E. S. Soldatov, A. S. Trifonov, V. A. Krupenin, and O. V. Snigirev, Moscow Univ. Phys. Bull. 72, 474 (2017).CrossRefGoogle Scholar
  26. 26.
    S. A. Dagesyan, V. V. Shorokhov, D. E. Presnov, et al., Nanotechnology 28, 225304 (2017).CrossRefGoogle Scholar
  27. 27.
    S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2006).CrossRefGoogle Scholar
  28. 28.
    V. V. Shorokhov, Moscow Univ. Phys. Bull. 72, 279 (2017).CrossRefGoogle Scholar
  29. 29.
    J. Zhang, C. Con, and B. Cui, ACS Nano 8, 3483 (2014).CrossRefGoogle Scholar
  30. 30.
    G. A. Zharik, S. A. Dagesyan, E. S. Soldatov, D. E. Presnov, and V. A. Krupenin, Moscow Univ. Phys. Bull. 72, 627 (2017).CrossRefGoogle Scholar
  31. 31.
    A. A. Shemukhin, Yu. V. Balakshin, A. P. Evseev, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 507 (2017).CrossRefGoogle Scholar
  32. 32.
    Yu. V. Balakshin, A. A. Shemukhin, A. V. Nazarov, A. V. Kozhemiako, and V. S. Chernysh, Tech. Phys. 63, 1900 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. E. Presnov
    • 1
    • 2
    Email author
  • S. A. Dagesyan
    • 1
  • I. V. Bozhev
    • 1
  • V. V. Shorokhov
    • 1
  • A. S. Trifonov
    • 1
  • A. A. Shemukhin
    • 1
    • 2
  • I. V. Sapkov
    • 1
  • I. G. Prokhorova
    • 1
  • O. V. Snigirev
    • 1
  • V. A. Krupenin
    • 1
    Email author
  1. 1.Quantum Technology Center, Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations