Advertisement

Moscow University Physics Bulletin

, Volume 74, Issue 2, pp 124–130 | Cite as

Free Energy and the Equation of State of a System of Solid Spheres in Narrow Cylindrical Pores

  • P. N. NikolaevEmail author
Theoretical and Mathematical Physics
  • 10 Downloads

Abstract

In this work, the free energy and the equation of state of a system of solid spheres in narrow cylindrical pores are determined using the combined method of accelerated convergence of series. This method includes the Euler method and a method based on taking the behavior of the system into account at high densities near the dense packing and on the idea of the effective number of the nearest neighbors. The results are compared with the data of a computer experiment for three different values of pore size and in all cases good agreement between theory and experiment was obtained. These are much better than the results of virial expansion, and when the transverse pore sizes increase, better than the results found on the basis of a series in powers of pressure as well. The method makes it possible to estimate the limits of applicability of the method of convergence acceleration, based on the transition from a series in density to a series in terms of pressure. To do this, the density with close packing and the maximum allowable density found by the method of Euler are compared. If these densities are close, then only the Euler method can be used. In the case of a significant difference, a combined method of accelerated convergence is required.

Keywords

classical ensemble theory thermodynamic functions and equations of state sequences series and summability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Godfrey and M. A. Moore, Phys. Rev. E 89, 032111 (2014).CrossRefGoogle Scholar
  2. 2.
    A. J. Post and D. A. Kofke, Phys. Rev. A 45, 939 (1992).CrossRefGoogle Scholar
  3. 3.
    J. A. Barker, Aust. J. Phys. 15, 127 (1962).CrossRefGoogle Scholar
  4. 4.
    K. K. Mon and J. K. Percus, J. Chem. Phys. 112, 3457 (2000).CrossRefGoogle Scholar
  5. 5.
    K. K. Mon, Phys. Rev. E 97, 052114 (2018).MathSciNetCrossRefGoogle Scholar
  6. 6.
    P. N. Nikolaev, Moscow Univ. Phys. Bull. 72, 23 (2017). doi  https://doi.org/10.3103/S0027134916050131 CrossRefGoogle Scholar
  7. 7.
    P. E. Sokol, W. J. Ma, K. W. Herwig, W. M. Snow, et al., Appl. Phys. Lett. 61, 777 (1992).CrossRefGoogle Scholar
  8. 8.
    D. A. Kofke and A. J. Post, J. Chem. Phys. 98, 4853 (1993).CrossRefGoogle Scholar
  9. 9.
    P. N. Nikolaev, Moscow Univ. Phys. Bull. 73, 263 (2018). doi  https://doi.org/10.3103/S002713491803013X CrossRefGoogle Scholar
  10. 10.
    C. Forster, D. Mukamel, and J. K. Posch, Phys. Rev. E 69, 066124 (2004).CrossRefGoogle Scholar
  11. 11.
    I. E. Kamenetskiy, K. K. Mon, and J. K. Percus, J. Chem. Phys. 121, 7355 (2004).CrossRefGoogle Scholar
  12. 12.
    P. N. Nikolaev, Moscow Univ. Phys. Bull. 66, 207 (2011). doi  https://doi.org/10.3103/S0027134911030155 CrossRefGoogle Scholar
  13. 13.
    J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, New York, 2006).zbMATHGoogle Scholar
  14. 14.
    J. E. Mayer and M. Goeppert-Mayer, Statistical Mechanics (Wiley, New York, 1977).zbMATHGoogle Scholar
  15. 15.
    K. K. Mon, J. Chem. Phys. 140, 244504 (2014).CrossRefGoogle Scholar
  16. 16.
    H. Kim, W. A. Goddard III, K. H. Han, C. Kim, E. K. Lee, et al., J. Chem. Phys. 134, 114502 (2011).CrossRefGoogle Scholar
  17. 17.
    P. N. Nikolaev, Moscow Univ. Phys. Bull. 66, 541 (2011). doi  https://doi.org/10.3103/S0027134911060142 CrossRefGoogle Scholar
  18. 18.
    A. V. Efimov, Calculus (Special Branches). Part 1 (Vysshaya Shkola, Moscow, 1980).Google Scholar
  19. 19.
    R. W. Hamming, Numerical Methods for Scientists and Engineers (Courier, New York, 1987).zbMATHGoogle Scholar
  20. 20.
    P. N. Nikolaev, Moscow Univ. Phys. Bull. 71, 75 (2016). doi  https://doi.org/10.3103/S0027134916010148 CrossRefGoogle Scholar
  21. 21.
    K. S. Kunz, Numerical Analysis (McGraw-Hill, New York, 1957).zbMATHGoogle Scholar
  22. 22.
    N. N. Bogolyubov, Yu. A. Mitropol’skii, and A. M. Samoilenko, Accelerated Convergence Method in Nonlinear Mechanics (Naukova Dumka, Kiev, 1969).Google Scholar
  23. 23.
    P. N. Nikolaev, Moscow Univ. Phys. Bull. 70, 107 (2015). doi  https://doi.org/10.3103/S0027134915020101 CrossRefGoogle Scholar
  24. 24.
    L. Tonks, Phys. Rev. 50, 955 (1936).CrossRefGoogle Scholar
  25. 25.
    K. Westera and E. R. Cowley, Phys. Rev. B 11, 4008 (1975).CrossRefGoogle Scholar
  26. 26.
    N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635 (1969).CrossRefGoogle Scholar
  27. 27.
    A. J. Schultz and D. A. Kofke, Phys. Rev. E 90, 023301 (2014).CrossRefGoogle Scholar
  28. 28.
    P. N. Nikolaev, Moscow Univ. Phys. Bull. 69, 146 (2014). doi  https://doi.org/10.3103/S0027134914020118 CrossRefGoogle Scholar
  29. 29.
    M. N. Bannerman, L. Lue, and L. V. Woodcock, J. Chem. Phys. 132, 084507 (2010).CrossRefGoogle Scholar
  30. 30.
    F. H. Ree and W. G. Hoover, J. Chem. Phys. 40, 939 (1964).MathSciNetCrossRefGoogle Scholar
  31. 31.
    F. H. Ree and W. G. Hoover, J. Chem. Phys. 46, 4181 (1967).CrossRefGoogle Scholar
  32. 32.
    E. A. Guggengeim, Mol. Phys. 9, 199 (1965).CrossRefGoogle Scholar
  33. 33.
    P. N. Nikolaev, Moscow Univ. Phys. Bull. 69, 134 (2014). doi  https://doi.org/10.3103/S0027134914020106 CrossRefGoogle Scholar
  34. 34.
    E. J. J. van Rensburg and G. M. Torrie, J. Phys. A 26, 943 (1993).MathSciNetCrossRefGoogle Scholar
  35. 35.
    E. J. J. van Rensburg, J. Phys. A 26, 4805 (1993).CrossRefGoogle Scholar
  36. 36.
    P. N. Nikolaev, Moscow Univ. Phys. Bull. 67, 413 (2012). doi  https://doi.org/10.3103/S0027134912050062 CrossRefGoogle Scholar
  37. 37.
    A. Y. Vlasov, X. M. You, and A. J. Masters, Mol. Phys. 100, 3313 (2002).CrossRefGoogle Scholar
  38. 38.
    J. Kolafa, S. Labik, and A. Malijevskı, Phys. Chem. Chem. Phys. 6, 2335 (2004).CrossRefGoogle Scholar
  39. 39.
    P. N. Nikolaev, Moscow Univ. Phys. Bull. 68, 196 (2013). doi  https://doi.org/10.3103/S0027134913030089 CrossRefGoogle Scholar
  40. 40.
    S. Labik, J. Kolafa, and A. Malijevskı, Phys. Rev. E 71, 021105 (2005).CrossRefGoogle Scholar
  41. 41.
    N. Clisby and B. McCoy, J. Stat. Phys. 114, 1361 (2004).CrossRefGoogle Scholar
  42. 42.
    D. Ma and G. Ahmadi, J. Chem. Phys. 84, 3449 (1986).CrossRefGoogle Scholar
  43. 43.
    P. N. Nikolaev, Sov. Phys. J. 20, 400 (1977). doi  https://doi.org/10.1007/BF00894859 CrossRefGoogle Scholar
  44. 44.
    U. F. Edgal, J. Chem. Phys. 94, 8179 (1991).CrossRefGoogle Scholar
  45. 45.
    J. G. Loeser, Z. Zheng, S. Kais, and D. R. Herschbach, J. Chem. Phys. 95, 4525 (1991).CrossRefGoogle Scholar
  46. 46.
    B. R. A. Nijboer and L. van Hove, Phys. Rev. 85, 777 (1952).CrossRefGoogle Scholar
  47. 47.
    F. H. Ree, R. N. Keeler, and S. L. McCarthy, J. Chem. Phys. 44, 3407 (1966).CrossRefGoogle Scholar
  48. 48.
    I. P. Bazarov and P. N. Nikolaev, Theor. Math. Phys. 41, 1116(1979). doi  https://doi.org/10.1007/BF01019384 CrossRefGoogle Scholar
  49. 49.
    J. H. Naim and J. E. Kilpatrick, Am. J. Phys. 40, 503 (1972).CrossRefGoogle Scholar
  50. 50.
    O. P. Nikolaeva, Russ. Phys. J. 51, 1174 (2008). doi  https://doi.org/10.1007/s11182-009-9149-z CrossRefGoogle Scholar
  51. 51.
    K. W. Kratky, Physica A 85, 607 (1976).CrossRefGoogle Scholar
  52. 52.
    I. P. Bazarovand P. N. Nikolaev, Theor. Math. Phys. 94, 109 (1993). doi  https://doi.org/10.1007/BF01017001 CrossRefGoogle Scholar
  53. 53.
    N. G. Inozemtseva, I. I. Maslennikov, and B. I. Sadovnikov, Moscow Univ. Phys. Bull. 68, 21 (2013). doi  https://doi.org/10.3103/S0027134913010086 CrossRefGoogle Scholar
  54. 54.
    E. A. Mason and T. H. Spurling, The Virial Equation of State (Pergamon, New York, 1969).Google Scholar
  55. 55.
    M. E. Bychkov, A. M. Savchenko, and B. I. Sadovnikov, Moscow Univ. Phys. Bull. 70, 484 (2015). doi  https://doi.org/10.3103/S0027134915060089 CrossRefGoogle Scholar
  56. 56.
    I. P. Bazarovand P. N. Nikolaev, Theor. Math. Phys. 47, 356 (1981). doi  https://doi.org/10.1007/BF01017027 CrossRefGoogle Scholar
  57. 57.
    T. N. Gerasimenko and P. A. Polyakov, Moscow Univ. Phys. Bull. 67, 296 (2012). doi  https://doi.org/10.3103/S0027134912030083 CrossRefGoogle Scholar
  58. 58.
    N. N. Bogolyubov, Selected Papers on Statistical Physics (Mosk. Gos. Univ., Moscow, 1979).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations