Moscow University Physics Bulletin

, Volume 74, Issue 2, pp 197–204 | Cite as

Relativistic Reductions in Precision Measurements of the Earth’s Gravitational Field Using Low-Orbit Spacecraft

  • V. K. MilyukovEmail author
  • M. V. Sazhin
  • V. N. SementsovEmail author
  • H.-Chi. Yeh
  • C. Xue
Astronomy, Astrophysics, and Cosmology


The advancement of space technology opens new perspectives in developing high-resolution models of the Earth’s gravitational field. The use of a precision laser interferometric system requires taking relativistic effects in the inter-satellite ranging within the satellite constellation into account. The main quantity measured by the laser system is the phase incursion of the laser beam when passing a double one-way range between the satellites. A solution for the relativistic phase is obtained that considers not only the usual Shapiro term but also the contribution of the quadrupole term to distributions of the Earth’s mass, the Earth’s spin, and tidal gravitational fields caused by the gravitational potentials of the outer bodies of the Solar System. Relativistic reduction terms are estimated at the accuracy level of ∼1 nm, which fully satisfies the accuracy of precision measurements in the two-spacecraft formation. It will be necessary to take the relativistic effects of the next order of smallness into account in the next-generation gravitational twin missions.


space geodesy Earth’s gravitational field relativistic effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ch. Reigber, H. Luehr, and P. Schwintzer, J. Adv. Space Res. 30, 129 (2002).CrossRefGoogle Scholar
  2. 2.
    B. D. Tapley, S. Bettadpur, M. M. Watkins, and Ch. Reigber, Geophys. Res. Lett. 31, L09607 (2004).CrossRefGoogle Scholar
  3. 3.
    A. Albertella, F. Migliaccio, and F. Sans, Celestial Mech. Dyn. Astron. 83, 1 (2002).CrossRefGoogle Scholar
  4. 4.
    M. T. Zuber, D. E. Smith, M. M. Watkins, et al., Science 339, 668 (2013).CrossRefGoogle Scholar
  5. 5.
    M. Watkins, F. Flechtner, F. Webb, et al., Proc. GRACE Science Team Meeting, Texas, United States, 2015.Google Scholar
  6. 6.
    V. K. Milyukov and H.-C. Yeh, Astron. Rep. 62, 1003 (2018).CrossRefGoogle Scholar
  7. 7.
    S. M. Kopeikin, M. Efroimsky, and G. Kaplan, Relativistic Celestial Mechanics of the Solar System (Wiley, 2011).Google Scholar
  8. 8.
    S. G. Turyshev, V. T. Toth, and M. V. Sazhin, Phys. Rev. D 87, 024020 (2013).CrossRefGoogle Scholar
  9. 9.
    S. G. Turyshev, M. V. Sazhin, and V. T. Toth, Phys. Rev. D 89, 105029 (2014).CrossRefGoogle Scholar
  10. 10.
    H.-C. Yeh, Q.-Z. Yan, Y.-R. Liang, Y. Wang, and J. Luo, Rev. Sci. Instrum. 82, 044501 (2011).CrossRefGoogle Scholar
  11. 11.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1980).zbMATHGoogle Scholar
  12. 12.
    M. V. Sazhin, J. Exp. Theor. Phys. 86, 220 (1998).CrossRefGoogle Scholar
  13. 13.
    S. A. Klioner, Astron. J. 125, 1580 (2003).CrossRefGoogle Scholar
  14. 14.
    S. Zschocke and S. A. Klioner, arXiv:0907.4318 [astro-ph.EP].Google Scholar
  15. 15.
    F. Flechtner, K.-H. Neumayer, Ch. Dahle, et al., Proc. GRACE Science Team Meeting, Texas, United States, 2015.Google Scholar
  16. 16.
    T. Reubelt, N. Sneeuw, and M. Sharifi, in Gravity, Geoid and Earth Observation, Ed. by S. P. Mertikas (Springer, 2010), p. 163.Google Scholar
  17. 17.
    T. P. van Dam, N. Visser, M. Sneeuw, et al., Final Project Report, ESA Contract No. 20403 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia
  2. 2.Sun Yat-sen UniversityGuangzhouChina

Personalised recommendations