Advertisement

Moscow University Physics Bulletin

, Volume 74, Issue 2, pp 131–136 | Cite as

Application of Asymptotic Analysis for Solving the Inverse Problem of Determining the Coefficient of Linear Amplification in Burgers’ Equation

  • D. V. LukyanenkoEmail author
  • V. T. VolkovEmail author
  • N. N. Nefedov
  • A. G. Yagola
Theoretical and Mathematical Physics

Abstract

Asymptotic analysis of a singularly perturbed reaction—diffusion—advection equation, which is called a Burgers-type equation in applications and has a solution with a sharp transition layer, is applied to solve the coefficient inverse problem of determining the coefficient of linear amplification from known information on the observed solution of the direct problem at the final moment of time. The efficiency of the approach proposed in this study is shown using a series of model numerical experiments.

Keywords

singularly perturbed problem reaction—diffusion—advection equation interior layer coefficient inverse problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Nefedov and O. V. Rudenko, Dokl. Math. 97, 99 (2018).MathSciNetCrossRefGoogle Scholar
  2. 2.
    D. V. Lukyanenko, V. T. Volkov, and N. N. Nefedov, Model. Anal. Inf. Sist. 24, 322 (2017).MathSciNetCrossRefGoogle Scholar
  3. 3.
    D. Lukyanenko, N. Nefedov, E. Nikulin, and V. T. Volkov, Lect. Notes Comput. Sci. 10187, 107 (2017).CrossRefGoogle Scholar
  4. 4.
    A. Melnikova, N. Levashova, and D. Lukyanenko, Lect.Notes Comput.Sci. 10187, 492 (2017).CrossRefGoogle Scholar
  5. 5.
    E. A. Antipov, V. T. Volkov, N. T. Levashova, and N. N. Nefedov, Model. Anal. Inf. Sist. 24, 259 (2017).MathSciNetCrossRefGoogle Scholar
  6. 6.
    E. A. Antipov, N. T. Levashova, and N. N. Nefedov, Comput. Math. Math. Phys. 54, 1536 (2014).MathSciNetCrossRefGoogle Scholar
  7. 7.
    D. V. Lukyanenko, M. A. Shishlenin, and V. T. Volkov, Commun. Nonlinear Sci. Numer. Simul. 54, 233 (2018).MathSciNetCrossRefGoogle Scholar
  8. 8.
    D. V. Lukyanenko, V. B. Grigorev, V. T. Volkov, and M. A. Shishlenin, Comput. Math. Appl. 77, 1245 (2019).MathSciNetCrossRefGoogle Scholar
  9. 9.
    V. T. Volkov, N. E. Grachev, N. N. Nefedov, and N. A. Nikolaev, Comput. Math. Math. Phys. 47, 1301 (2007).MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Kluwer Academic, 1995).Google Scholar
  11. 11.
    M. M. Lavrentiev, Rep. USSR Acad. Sci. 127, 31 (1959).Google Scholar
  12. 12.
    A. N. Tikhonov, Rep. USSR Acad. Sci. 153, 49 (1963).Google Scholar
  13. 13.
    V. V. Vasin and A. L. Ageev, Ill-Posed Problems with a Priori Information (VSP, Utrecht, 1995).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations