Advertisement

Moscow University Physics Bulletin

, Volume 74, Issue 2, pp 115–123 | Cite as

Optimal Integration of the Components of the Global Network of Gravitational-Wave Antennas

  • A. V. GusevEmail author
  • V. N. RudenkoEmail author
Astronomy, Astrophysics, and Cosmology (Review)
  • 2 Downloads

Abstract

This paper considers the problem of optimal integration of the components of the global network of laser gravitational-wave antennas in order to improve the detection efficiency and to better estimate the parameters of astrophysical gravitational-wave signals. A quasi-harmonic burst (chirp) that accompanies the merger of a relativistic binary star at the end of its evolution has been selected as a signal. The shape of such a signal is known up to a set of parameters to be estimated against the background of large coherent and stochastic noise. An alternative possibility of taking into account the coherent excitation phase of individual detectors (component integration by input) is analyzed in addition to the well-known method for filtering output signals by coincidence in time (component integration by output). Statistical detection characteristics for both modes are calculated. The method typical for problems of distinguishing deterministic signals in radar systems is used. A significant increase in detection efficiency during the input integration of network components is shown.

Keywords

gravitational-wave radiation gravitational-wave antennas merger of relativistic binary stars global network of gravitational-wave detectors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. P. Abbott, R. Abbott, T. D. Abbott, et al. (LIGO Collab. and Virgo Collab.), Phys. Rev. Lett. 116, 061102 (2016).MathSciNetCrossRefGoogle Scholar
  2. 2.
    B. P. Abbott, R. Abbott, T. D. Abbott, et al. (LIGO Collab. and Virgo Collab.), Phys.Rev.Lett. 116, 241103 (2016).CrossRefGoogle Scholar
  3. 3.
    B. P. Abbott, R. Abbott, T. D. Abbott, et al. (LIGO Collab. and Virgo Collab.), Phys. Rev. Lett. 118, 221101 (2017).CrossRefGoogle Scholar
  4. 4.
    B. P. Abbott, R. Abbott, T. D. Abbott, et al. (LIGO Collab. and Virgo Collab.), Phys. Rev. Lett. 119, 141101 (2017).CrossRefGoogle Scholar
  5. 5.
    B. P. Abbott, R. Abbott, T. D. Abbott, et al. (LIGO Collab. and Virgo Collab.), Phys. Rev. Lett. 119, 161101 (2017).CrossRefGoogle Scholar
  6. 6.
    B. Sathyaprakash, M. Abernathy, F. Acernese, et al., Classical Quantum Gravity 29, 124013 (2012).CrossRefGoogle Scholar
  7. 7.
    P. Raffai, L. Gondan, I. S. Heng, et al., Classical Quantum Gravity 30, 155004 (2013).CrossRefGoogle Scholar
  8. 8.
    Y. M. Hu, P. Raffai, L. Gondan, et al., arXiv:1409.2875 [astro-ph.IM].Google Scholar
  9. 9.
  10. 10.
    J. Weber, Phys. Rev. 117, 306 (1960).MathSciNetCrossRefGoogle Scholar
  11. 11.
    L. S. Finn, arXiv:gr-qc/0010033.Google Scholar
  12. 12.
    A. Wald, Statistical Decision Functions (Chelsea Pub. Co., 1971).Google Scholar
  13. 13.
    H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I (Wiley, 2004).Google Scholar
  14. 14.
    V. I. Tikhonov, Optimum Signal Reception (Sov. Radio, Moscow, 1983).Google Scholar
  15. 15.
    B. R. Levin, Theoretical Foundations of Statistical Radio Engineering (Radio i Svyaz’, Moscow, 1992).Google Scholar
  16. 16.
    Yu. G. Sosulin, Theoretical Foundations of Radio Detection and Navigation (Radio i Svyaz’, Moscow, 1992).Google Scholar
  17. 17.
    C. W. Misner, K. Thorne, and J. Wheeler, Gravitation (W. H. Freeman, San Francisco, 1977).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia
  2. 2.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations