Advertisement

Moscow University Physics Bulletin

, Volume 74, Issue 2, pp 144–148 | Cite as

Numerical Simulation of Radiation Anisotropy of the Pyroelectric Neutron Generator

  • M. B. GromovEmail author
  • A. S. KubankinEmail author
  • V. Y. Ionidi
  • A. A. Kaplii
  • M. A. Kirsanov
  • A. A. Klenin
  • D. A. Kolesnikov
  • A. N. Oleinik
  • A. S. Chepurnov
  • A. V. Shchagin
The Physics of the Atomic Nucleus and Elementary Particles
  • 5 Downloads

Abstract

The pyroelectric neutron generator is a compact source of fast neutrons with an energy of 2.45 MeV and a yield up to ∼104 neutrons/s. The device is designed for calibration of low-background neutrino and dark matter detectors and may also serve as an alternative to traditional radioactive sources of fast neutrons in physical research and practical work. Numerical simulation of the angular distribution of neutrons emitted by the pyroelectric generator with the D(d, n)3He reaction proceeding within it was performed in order to calculate the neutron yield in the full solid angle and in a given direction correctly. The angular distribution was found to be anisotropic: the neutron yield increased in the direction of motion of incident deuterium ions. This anisotropy was as large as ∼25% at a maximum energy of 28 keV of incident particles. The anisotropy increased nonlinearly with the ion energy: it reached ∼70% at 50 keV and a monoenergetic flux, but was virtually zero below 10 keV. The obtained angular distribution is similar to that of neutrons in the case of a 15-keV monoenergetic flux of deuterium ions.

Keywords

pyroelectric neutron generator angular distribution anisotropy calibration neutrons low-background detectors Borexino JUNO DarkSide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Eguchi, S. Enomoto, K. Furuno, et al., Phys. Rev. Lett. 90, 021802 (2003). https://arxiv.org/abs/hep-ex/0212021.CrossRefGoogle Scholar
  2. 2.
    F. Suekane, T. Iwamoto, H. Ogawa, et al., arXiv:physics/0404071 [physics.ins-det].Google Scholar
  3. 3.
    G. Alimonti, C. Arpesella, H. Back, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 600, 568 (2009). https://arxiv.org/abs/0806.2400.CrossRefGoogle Scholar
  4. 4.
    X. Guo, N. Wang, R. Wang, et al., arXiv:hep-ex/0701029.Google Scholar
  5. 5.
    P. Agnes, T. Alexander, A. Alton et al., Phys. Lett. B 743, 456 (2015). https://arxiv.org/abs/1410.0653.CrossRefGoogle Scholar
  6. 6.
    C. E. Aalseth, F. Acerbi, P. Agnes, et al., Eur. Phys. J. Plus 133, 131 (2018). https://arxiv.org/abs/1707.08145.CrossRefGoogle Scholar
  7. 7.
    T. Adam, F. An, G. An, et al., arXiv:1508.07166 [physics.ins-det].Google Scholar
  8. 8.
    F. An, G. An, Q. An, et al., J. Phys. G 43, 030401 (2016). https://arxiv.org/abs/1507.05613.CrossRefGoogle Scholar
  9. 9.
    S. Andringa, E. Arushanova, S. Asahi, et al., Adv. High Energy Phys. 2016, 6194250 (2016). https://arxiv.org/abs/1508.05759.CrossRefGoogle Scholar
  10. 10.
    B. J. Mount, S. Hans, R. Rosero, et al., arXiv:1703.09144 [physics.ins-det].Google Scholar
  11. 11.
    D. S. Akerib, C. W. Akerlof, S. K. Alsum, et al., arXiv:1802.06039 [astro-ph.IM].Google Scholar
  12. 12.
    Y. Danon, J. Instrum. 7, C04002 (2012).  https://doi.org/10.1088/1748-0221/7/04/C04002.Google Scholar
  13. 13.
    M. B. Gromov, O. O. Ivashuk, V. Y. Ionidi, P. V. Karataev, I. A. Kishin, A. S. Kubankin, A. N. Oleinik, A. S. Chepurnov, and A. V. Shchagin, Bull. Lebedev Phys. Inst. 43, 319 (2016).  https://doi.org/10.3103/S1068335616110014.CrossRefGoogle Scholar
  14. 14.
    A. Krauss, H. W. Becker, H. P. Trautvetter, et al., Nucl. Phys. A 465, 150 (1987).CrossRefGoogle Scholar
  15. 15.
    D. Gillich, Y. Danon, J. A. Geuther, et al., Trans. Am. Nucl. Soc. 97, 927 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. B. Gromov
    • 1
    Email author
  • A. S. Kubankin
    • 2
    • 3
    Email author
  • V. Y. Ionidi
    • 1
  • A. A. Kaplii
    • 2
  • M. A. Kirsanov
    • 4
  • A. A. Klenin
    • 2
  • D. A. Kolesnikov
    • 2
    • 5
  • A. N. Oleinik
    • 2
    • 6
  • A. S. Chepurnov
    • 1
  • A. V. Shchagin
    • 2
    • 5
  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  2. 2.Laboratory of Radiation PhysicsBelgorod National Research UniversityBelgorodRussia
  3. 3.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Moscow Engineering Physics InstituteNational Research Nuclear University MEPhIMoscowRussia
  5. 5.Kharkiv Institute of Physics and TechnologyKharkivUkraine
  6. 6.John Adams Institute at Royal HollowayUniversity of LondonEgham, SurreyUK

Personalised recommendations