Advertisement

Moscow University Physics Bulletin

, Volume 74, Issue 2, pp 171–175 | Cite as

Dependence of the Thin Films Porosity On the Deposition Conditions: Results of the Molecular Dynamics Simulation

  • F. V. GrigorievEmail author
  • V. B. Sulimov
  • A. V. Tikhonravov
Physics of Condensed State of Matter
  • 2 Downloads

Abstract

Dependence of the thin films porosity on substrate temperature and deposition energy is studied using the classical atomistic simulation. It is revealed that pore dimensions increase with the decrease of the energy of deposited atoms. In the case of low-energy deposition up to several percents of cluster volume are available for atoms and small molecules having van der Waals radii less than 0.2 nm. Dimensions of pores can achieve several nanometers. The growth of substrate temperature from 300 to 500 K results in the decrease of porosity. Structural properties of deposited films vary insignificantly with the variation of energy distribution of deposited atoms if the average energy is fixed.

Keywords

high-performance simulation molecular dynamics thin film growth deposition process silicon dioxide porosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Mochizuki, Y. Namihira, M. Kuwazura, and Y. Iwamoto, IEEE J. Quantum Electron. 20, 694 (1984). doi  https://doi.org/10.1109/JQE.1984.1072462 CrossRefGoogle Scholar
  2. 2.
    A. Khosravanian, M. Dehghani, M. Pazirofteh, M. Asghari, A. H. Mohammadi, and D. Shahsavari, Int. J. Hydrogen Energy 43, 2803 (2018). doi  https://doi.org/10.1016/j.ijhydene.2017.12.122 CrossRefGoogle Scholar
  3. 3.
    M. Vitiello, N. Lopez, F. Illas, and G. Pacchioni, J. Phys. Chem. A 104, 4674 (2000). doi  https://doi.org/10.1021/jp993214f CrossRefGoogle Scholar
  4. 4.
    F. V. Grigoriev, V. B. Sulimov, and A. V. Tikhonravov, Moscow Univ. Phys. Bull. 73, 310 (2018).CrossRefGoogle Scholar
  5. 5.
    F. V. Grigoriev, A. V. Sulimov, I. V. Kochikov, et al., Int. J. High Perform. Comput. Appl. 29, 184 (2015). doi  https://doi.org/10.1177/1094342014560591 CrossRefGoogle Scholar
  6. 6.
    F. V. Grigoriev, A. V. Sulimov, E. V. Katkova, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, J. Non-Cryst. Solids 448, 1 (2016).  https://doi.org/10.1016/j.jnoncrysol.2016.06.032.CrossRefGoogle Scholar
  7. 7.
    F. V. Grigoriev, E. V. Katkova, A. V. Sulimov, V. B. Sulimov, I. V. Kochikov, and A. V. Tikhonravov, Opt. Mater. Express 6, 3960 (2016).CrossRefGoogle Scholar
  8. 8.
    M. J. Abraham, T. Murtola, R. Schulz, S. Pall, J. C. Smith, B. Hess, and E. Lindahl, Software X 1–2, 19 (2015).  https://doi.org/10.1016/j.softx.2015.06.001.Google Scholar
  9. 9.
    E. M. Kirova, G. E. Norman, and V. V. Pisarev, Russ. J. Phys. Chem. A 92, 1865 (2018).CrossRefGoogle Scholar
  10. 10.
    V. Sadovnichy, A. Tikhonravov, V. Voevodin, and V. Opanasenko, in Contemporary High Performance Computing: From Petascale toward Exascale (CRC, Boca Raton, 2013), p. 283.Google Scholar
  11. 11.
    W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).  https://doi.org/10.1016/0263-7855(96)00018-5.CrossRefGoogle Scholar
  12. 12.
    A. Bondi, J. Phys. Chem. 68, 441 (1964).CrossRefGoogle Scholar
  13. 13.
    N. L. Allinger, Adv. Phys. Org. Chem. 13, 1 (1976).MathSciNetGoogle Scholar
  14. 14.
    B. Mysen and P. Richet, Silicate Glasses and Melts: Properties and Structure (Elsevier, 2005).Google Scholar
  15. 15.
    S. Kohara et al., Phys. Rev. B 82, 134209 (2010).  https://doi.org/10.1103/PhysRevB.82.134209.CrossRefGoogle Scholar
  16. 16.
    S. Kohara, J. Akola, H. Morita, K. Suzuya, J. K. R. Weber, M. C. Wilding, and C. J. Benmore, Proc. Natl. Acad. Sci. U. S. A. 108, 14780 (2011).  https://doi.org/10.1073/pnas.1104692108.CrossRefGoogle Scholar
  17. 17.
    R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).  https://doi.org/10.1107/S0567739476001551.CrossRefGoogle Scholar
  18. 18.
    F. V. Grigoriev, V. B. Sulimov, and A. V. Tikhonravov, Proc. SPIE 10603, 106030F (2017). doi  https://doi.org/10.1117/12.2292420 Google Scholar
  19. 19.
    F. V. Grigoriev, M. V. Basilevsky, S. N. Gabin, A. N. Romanov, and V. B. Sulimov, J. Phys. Chem. B 111, 13748 (2007). doi  https://doi.org/10.1021/jp076266a CrossRefGoogle Scholar
  20. 20.
    F. V. Grigoriev, S. N. Gabin, A. N. Romanov, and V. B. Sulimov, J. Phys. Chem. B 112, 15355 (2008). doi  https://doi.org/10.1021/jp8041439 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • F. V. Grigoriev
    • 1
    Email author
  • V. B. Sulimov
    • 1
  • A. V. Tikhonravov
    • 1
  1. 1.Research Computing CenterMoscow State UniversityMoscowRussia

Personalised recommendations