Advertisement

Moscow University Physics Bulletin

, Volume 74, Issue 2, pp 137–143 | Cite as

Analysis of α + 9Be Scattering with a Semimicroscopic Potential

  • S. P. GoncharovEmail author
  • R. V. Sukhorukov
  • A. A. Ogloblin
  • A. S. Demyanova
  • A. N. Danilov
  • S. V. Dmitriev
  • V. I. Starostin
The Physics of the Atomic Nucleus and Elementary Particles

Abstract

The analysis of the available data on the α + 9Be elastic scattering in the energy range from 28 to 104 MeV, including recent measurements at energies of 30, 40, and 90 MeV is carried out. The parameters of the semi-microscopic potential are obtained in the framework of the dispersion optical model, in which the exchange components of the average field potential were calculated using the previously proposed pseudo-oscillator approximation for the single-particle density matrix. The found potential is tested using the distorted wave method on the analysis of inelastic scattering in the considered energy region with excitation of the 5/2 (2.43 MeV) and 7/2 (6.38 MeV) levels of the ground-state rotational band. The potential parameters used for the output channel were estimated on the basis of the energy dependence. A satisfactory description of the angular distributions and the values of the deformation length is obtained.

Keywords

mean field potential diffraction optical model light nuclei elastic scattering inelastic scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. R. Satchler, Direct Nuclear Reactions (Clarendon, Oxford, 1983).Google Scholar
  2. 2.
    S. A. Goncharov, O. M. Knyaz’kov, and A. A. Kolozhvari, Yad. Fiz. 59, 666 (1996).Google Scholar
  3. 3.
    D. T. Khoa and G. R. Satchler, Nucl. Phys. A 668, 3 (2000).CrossRefGoogle Scholar
  4. 4.
    S. A. Goncharov and A. Izadpanah, Phys. At. Nucl. 70, 18 (2007).CrossRefGoogle Scholar
  5. 5.
    S. A. Goncharov and A. Izadpanah, Phys. At. Nucl. 70, 1491 (2007).CrossRefGoogle Scholar
  6. 6.
    S. A. Goncharov and R. V. Sukhorukov, Moscow Univ. Phys. Bull. 73, 301 (2018). doi  https://doi.org/10.3103/S0027134918030074 CrossRefGoogle Scholar
  7. 7.
    T. Yanabu et al., J. Phys. Soc. Jpn. 19, 1818 (1964).CrossRefGoogle Scholar
  8. 8.
    N. Burtebaev, Vopr. At. Nauki Tekh., Ser.: Fiz. Yad. Reakt., No. 1/2, 137 (2002).Google Scholar
  9. 9.
    R. J. Peterson, Nucl. Phys. A 377, 41 (1982).CrossRefGoogle Scholar
  10. 10.
    S. Roy et al., Phys. Rev. C 52, 1524 (1995).CrossRefGoogle Scholar
  11. 11.
    G. Hauser et al., Nucl. Phys. A 128, 81 (1969).CrossRefGoogle Scholar
  12. 12.
    A. S. Demyanova et al., EPJ Web Conf. 66, 02026 (2014).CrossRefGoogle Scholar
  13. 13.
    A. S. Demyanova, A. A. Ogloblin, A. N. Danilov, S. V. Dmitriev, V. I. Starostin, S. A. Goncharov, T. L. Belyaeva, W. Trzaska, V. A. Maslov, Yu. G. Sobolev, N. Burtebaev, E. Mukhamedzhanov, L. I. Slusarenko, and Yu. N. Pavlenko, JETP Lett. 102, 413 (2015).CrossRefGoogle Scholar
  14. 14.
    D. T. Khoa, G. R. Satchler, and W. von Oertzen, Phys. Rev. C 56, 954 (1997).CrossRefGoogle Scholar
  15. 15.
    K. Arai et al., Phys. Rev. C 5, 132 (1996).CrossRefGoogle Scholar
  16. 16.
    A. Ingemarsson et al., Nucl. Phys. A 676, 3 (2000).CrossRefGoogle Scholar
  17. 17.
    S. A. Goncharov et al., EPJ Web Conf. 66, 03034 (2014).CrossRefGoogle Scholar
  18. 18.
    I. J. Thompson, Comput. Phys. Rep. 7, 167 (1988).CrossRefGoogle Scholar
  19. 19.
  20. 20.
    F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. A 227, 1 (1974).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. P. Goncharov
    • 1
    Email author
  • R. V. Sukhorukov
    • 1
  • A. A. Ogloblin
    • 2
  • A. S. Demyanova
    • 2
  • A. N. Danilov
    • 2
  • S. V. Dmitriev
    • 2
  • V. I. Starostin
    • 2
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.National Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations