Advertisement

Moscow University Physics Bulletin

, Volume 74, Issue 2, pp 181–185 | Cite as

Short-Range Order and Its Energy Characteristics in the Ni—14 at % Pt Alloy

  • L. EnkhtorEmail author
  • V. M. SilonovEmail author
Physics of Condensed State of Matter

Abstract

The diffuse scattering of X-rays is used to study the short-range order in a polycrystalline solid solution of Ni—14 at % Pt. Its parameters are determined on the initial six coordination spheres. We experimentally prove that short-range order of the L12 type occurs. The ordering energies for the considered coordination spheres are estimated. The stabilizing role of short-range order in the formation of the crystal structure of Ni—14 at % Pt alloy is shown. The temperature of the order—disorder phase transition is estimated.

Keywords

short-range order size effect X-ray diffuse scattering ordering energy critical temperature of phase transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Iveronova and P. P. Katsnelson, Short-Range Order in Solid Solutions (Nauka, Moscow, 1977).Google Scholar
  2. 2.
    V. I. Iveronova and P. P. Katsnelson, Fiz. Met. Metalloved. 16, 787 (1963); P. P. Katsnel’son, Kristallografiya 10, 330 (1965).Google Scholar
  3. 3.
    Constitution Diagrams of Binary Metallic Systems, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1999), Vol. 1.Google Scholar
  4. 4.
    A. G. Khachaturyan, The Theory of Phase Transformations and the Structure of Solid Solutions (Nauka, Moscow, 1974).Google Scholar
  5. 5.
    V. M. Silonov, Introduction to the Microscopic Theory of Solid Solutions (Mosk. Gos. Univ., Moscow, 2005).Google Scholar
  6. 6.
    M. A. Krivoglaz, The Theory of Scattering of X-Rays and Thermal Neutrons by Real Crystals (Nauka, Moscow, 1967).Google Scholar
  7. 7.
    P. C. Clapp and S. C. Moss, Phys Rev. 142, 418 (1966).CrossRefGoogle Scholar
  8. 8.
    W. Schweika and H. G. Haubold, Phys. Rev. B 37, 9240 (1988).CrossRefGoogle Scholar
  9. 9.
    I. V. Massanskii, V. I. Tokar, and T. A. Grishchenko, Phys. Rev B 44, 4647 (1991).CrossRefGoogle Scholar
  10. 10.
    A. A. Katsnelson, V. M. Silonov, and F. A. Khwaja, Phys. Status Solidi(b) 91, 11 (1979).CrossRefGoogle Scholar
  11. 11.
    L. Enkhtor and V. M. Silonov, in Proc. VIII Int. Conf. “Phase Transformations and Strength of Crystals,” Chernogolovka, Russia, 2014, p. 159.Google Scholar
  12. 12.
    I. N. Frantsevich, F. F. Voronov, and S. A. Bakuta, Elastic Constants and Elastic Moduli of Metals and Nonmetals (Naukova Dumka, Kiev, 1982).Google Scholar
  13. 13.
    B. Borie, Acta Crystallogr. 14, 566 (1961).CrossRefGoogle Scholar
  14. 14.
    J. H. Hubbell, Wm. J. Veigele, E. A. Briggs, et al., J. Phys. Chem. Ref. Data 4, 471 (1975).CrossRefGoogle Scholar
  15. 15.
    T. Cromer and P. Liberman, J. Chem. Phys. 53, 1891 (1970).CrossRefGoogle Scholar
  16. 16.
    N. R. Draper and H. Smith, Applied Regression Analysis (Wiley, 1981).Google Scholar
  17. 17.
    V. I. Iveronova, P. P. Katsnelson, and V. M. Silonov, Appar. Metody Rentgenovskogo Anal. XIV, 176 (1974).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Physics, School of Science and ArtsNational University of MongoliaUlaanbaatarMongolia
  2. 2.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations