Advertisement

Moscow University Physics Bulletin

, Volume 74, Issue 2, pp 191–196 | Cite as

Novel Fundaments to Characterize and to Assess the Material Quality for High Photon Beam Filtration Efficiency

  • Mohamed BencheikhEmail author
  • Abdelmajid Maghnouj
  • Jaouad Tajmouati
  • Abdessamad Didi
Biophysics and Medical Physics
  • 1 Downloads

Abstract

The objective of this study is to introduce novel fundaments to characterize and assess the material behaviors on photon beam attenuation and beam softening for high filtration system quality. This study was done by Monte Carlo method using BEAMnrc code and BEAMDP code. After validation of Monte Carlo model of linear accelerator with flattening filter; the later was replaced by material slab of aluminum and copper with different thickness. The photon beam attenuation was evaluated for primary photon fluence and secondary photon fluence for checking the dependence on energy; the beam softening was also evaluated based on beam attenuation coefficients. Based on the beam softening coefficients that were correlated by attenuation coefficients, the softening index was introduced as a new parameter to assess the material effects for high filtration system quality. These novel fundaments allow assessing the quality of a material for high photon beam filtration system quality.

Keywords

Slab thickness Monte Carlo simulation material actions BEAMnrc code BEAMDP code 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

As authors, we would like to thank Varian Medical Systems for providing us the Varian Clinac 2100 geometry data and giving us this opportunity to study the Varian linear accelerator technology and to participate in its future development.

References

  1. 1.
    M. Bencheikh, A. Maghnouj, and J. Tajmouati, Moscow Univ. Phys. Bull. 72, 263 (2017).CrossRefGoogle Scholar
  2. 2.
    M. Bencheikh, A. Maghnouj, and J. Tajmouati, Phys. Part. Nucl. Lett. 14, 963 (2017).CrossRefGoogle Scholar
  3. 3.
    A. Didi, A. Dadouch, M. Bencheikh, and O. Jai, Moscow Univ. Phys. Bull. 72, 460 (2017).CrossRefGoogle Scholar
  4. 4.
    J. V. Siebers, P. J. Keall, B. Libby, and R. Mohan, Phys. Med. Biol. 44, 3009 (1999).CrossRefGoogle Scholar
  5. 5.
    A. O. Ezzati, Y. Xiao, M. Sohrabpour, and M. T. Studenski, Med. Biol. Eng. Comput. 53, 67 (2015).CrossRefGoogle Scholar
  6. 6.
    D. Sheikh-Bagheri and D. W. Rogers, Med. Phys. 29, 379 (2002).CrossRefGoogle Scholar
  7. 7.
    M. Bencheikh, A. Maghnouj, and J. Tajmouati, Moscow Univ. Phys. Bull. 72, 640 (2017).CrossRefGoogle Scholar
  8. 8.
    M. Bencheikh, A. Maghnouj, J. Tajmouati, and A. Didi, Phys. AUC 27, 50 (2017).Google Scholar
  9. 9.
    M. Bencheikh, A. Maghnouj, and J. Tajmouati, Moscow Univ. Phys. Bull. 72, 647 (2017).CrossRefGoogle Scholar
  10. 10.
    M. Bencheikh, A. Maghnouj, and J. Tajmouati, Moscow Univ. Phys. Bull. 72, 653 (2017).CrossRefGoogle Scholar
  11. 11.
    M. Bencheikh, A. Maghnouj, and J. Tajmouati, Phys. Part. Nucl. Lett. 14, 953 (2017).CrossRefGoogle Scholar
  12. 12.
    THERAPLAN Plus Technical Reference Manual, 18th ed. (MDS Nordion, 2000).Google Scholar
  13. 13.
    D. W. O. Rogers, B. Walters, and I. Kawrakow, BEAMnrc Users Manual (National Research Council of Canada, Ottawa, 2013), pp. 12–254.Google Scholar
  14. 14.
    D. W. O. Rogers, I. Kawrakow, J. P. Seuntjens, B. Walters, and H. E. Mainegra, NRC User Codes for EGSnrc (National Research Council of Canada, Ottawa, 2013), pp. 6–83.Google Scholar
  15. 15.
    D. A. Low and J. F. Dempsey, Med. Phys. 30, 2455 (2003).CrossRefGoogle Scholar
  16. 16.
    D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, Med. Phys. 25, 656 (1998).CrossRefGoogle Scholar
  17. 17.
    C. M. Ma and D. W. O. Rogers, BEAMDP Users Manual (National Research Council of Canada, Ottawa, 2013), pp. 3–24.Google Scholar
  18. 18.
    M. Aljamal and A. Zakaria, Aust. J. Basic Appl. Sci. 7, 340 (2004).Google Scholar
  19. 19.
    Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer (International Atomic Energy Agency, Vienna, 2004).Google Scholar
  20. 20.
    Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems (International Atomic EnergyAgency, Vienna, 2007).Google Scholar
  21. 21.
    B. Kadman, N. Chawapun, S. Ua-apisitwong, T. Asakit, N. Chumpu, and J. Rueansri, J. Phys.: Conf. Ser. 694, 012023 (2016).Google Scholar
  22. 22.
    M. Bencheikh, A. Maghnouj, J. Tajmouati, A. Didi, and A. O. Ezzati, Phys. Part.Nucl. Lett. 14, 780 (2017).CrossRefGoogle Scholar
  23. 23.
    M. Maqbool, W. Muhammad, M. Shahid, M. Ahmad, and M. Matiullah, Rep. Pract. Oncol. Radiother. 14, 214 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Mohamed Bencheikh
    • 1
    Email author
  • Abdelmajid Maghnouj
    • 1
  • Jaouad Tajmouati
    • 1
  • Abdessamad Didi
    • 2
  1. 1.LISTA Laboratory, Physics Department, Faculty of Sciences Dhar El-MahrazUniversity of Sidi Mohamed Ben AbdellahFezMorocco
  2. 2.Theoretical Physics and Particles Laboratory (LPTP), Department of Physics, Faculty of SciencesMohammed I UniversityOujdaMorocco

Personalised recommendations