Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 6, pp 659–668 | Cite as

The Transport of Electrons through Tetrapod-Shaped CdTe/CdSe Nanocrystals

  • R. V. ZakharovEmail author
  • V. V. Shorokhov
  • A. S. Trifonov
  • R. B. Vasiliev
CONDENSED MATTER PHYSICS
  • 3 Downloads

Abstract

A quasi-one-dimensional model was developed for the transport of electrons in the scanning tunneling microscope needle–CdTe/CdSe tetrapod-shaped nanocrystal system. This model was used as a basis to study the effect of the concentration of charge carriers in the tetrapod and its energy band structure, the geometry, and the spatial orientation with respect to the substrate on the voltage–current characteristics. The major classes of voltage–current characteristics that could be experimentally measured were determined by numerical modeling. The thus-determined classes of voltage–current characteristics were immediately related with the spatial orientation and sizes of tetrapods. This classification of voltage–current characteristics was used to separate the voltage–current characteristics, which corresponded to the transport of electrons from the scanning microscope needle through the tetrapod into the substrate, from the array of previously measured characteristics. The numerically calculated and experimental characteristics were compared with each other to determine the best-fit parameters of this model.

Keywords:

tetrapods tunnel effect nanocrystals electron transport voltage–current characteristic 

Notes

ACKNOWLEDGMENTS

This work was financially supported by the Russian Foundation for Basic Research (grant no. 16-52-12031 NNIO_a) and the Russian Scientific Foundation (grant no. 16-12-00072).

REFERENCES

  1. 1.
    D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shev-chenko, Chem. Rev. 110, 389 (2010).CrossRefGoogle Scholar
  2. 2.
    X. Lan, S. Masala, and E. H. Sargent, Nat. Mater. 13, 233 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    F. Hetsch, N. Zhao, S. V. Kershaw, and A. L. Rogach, Mater. Today 16, 312 (2013).CrossRefGoogle Scholar
  4. 4.
    Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, Nat. Photonics 7, 13 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    R. B. Vasiliev, D. N. Dirin, and A. M. Gaskov, Russ. Chem. Rev. 80, 1139 (2011). https://doi.org/ 10.1070/RC2011v080n12ABEH004240ADSCrossRefGoogle Scholar
  6. 6.
    L. Manna, E. C. Scher, and A. P. Alivisatos, J. Am. Chem. Soc. 122, 12700 (2000).CrossRefGoogle Scholar
  7. 7.
    M. Kuno, O. Ahmad, V. Protasenko, D. Bacinello, and T. H. Kosel, Chem. Mater. 18, 5722 (2006).CrossRefGoogle Scholar
  8. 8.
    S. Ithurria and B. Dubertret, J. Am. Chem. Soc. 130, 16504 (2008).CrossRefGoogle Scholar
  9. 9.
    S. Ithurria et al., Nat. Mater. 10, 936 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    N. N. Schlenskaya et al., Chem. Mater. 29, 579 (2017).CrossRefGoogle Scholar
  11. 11.
    R. B. Vasiliev et al., Chem. Mater. 30, 1710 (2018).CrossRefGoogle Scholar
  12. 12.
    W. U. Huynh, X. Peng, and A. P. Alivisatos, Proc. Electrochem. Soc. 99, 11 (1999).Google Scholar
  13. 13.
    B. Sun, E. Marx, and N. C. Greenham, Nano Lett. 3, 961 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    H. Wang et al., J. Mater. Chem. 22, 12532 (2012).CrossRefGoogle Scholar
  15. 15.
    L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, Nat. Mater. 2, 382 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    D. J. Milliron et al., Nature 430, 190 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    S. Deka et al., Nano Lett. 10, 3770 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    A. G. Kanaras, C. Sönnichsen, H. Liu, and A. P. Ali-visatos, Nano Lett. 5, 2164 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Cui, U. Banin, M. T. Björk, and A. P. Alivisatos, Nano Lett. 5, 1519 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    R. B. Vasiliev et al., J. Mater. Res. 26, 1621 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    A. Trifonov et al., Radioengineering 35, 40 (2013).Google Scholar
  22. 22.
    I. Gur, N. A. Fromer, and A. P. Alivisatos, J. Phys. Chem. B 110, 25543 (2006).CrossRefGoogle Scholar
  23. 23.
    H. Steinberg et al., Nano Lett. 9, 3671 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    H. Steinberg et al., Nano Lett. 10, 2416 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    C. Canali, F. Nava, G. Ottaviani, and C. Paorici, Solid State Commun. 11, 105 (1972).ADSCrossRefGoogle Scholar
  26. 26.
    K. Sattler, Handbook of Nanophysics: Nanoparticles and Quantum Dots (CRC Press, 2010).CrossRefGoogle Scholar
  27. 27.
    S. Sze, Physics of Semiconductor Devices (Wiley, 1981).Google Scholar
  28. 28.
    A. Harwit, J. S. Harris, and A. Kapitulnik, J. Appl. Phys. 60, 3211 (1986).ADSCrossRefGoogle Scholar
  29. 29.
    R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).ADSCrossRefGoogle Scholar
  30. 30.
    H. Liu, Superlattices Microstruct. 3, 379 (1987).ADSCrossRefGoogle Scholar
  31. 31.
    M. Jonson and A. Grincwajg, Appl. Phys. Lett. 51, 1729 (1987).ADSCrossRefGoogle Scholar
  32. 32.
    L. Fang et al., J. Chem. Phys. 127, 184704 (2007).ADSCrossRefGoogle Scholar
  33. 33.
    S. Yamada, J. Phys. Soc. Jpn. 15, 1940 (1960).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • R. V. Zakharov
    • 1
    • 2
    Email author
  • V. V. Shorokhov
    • 1
    • 5
  • A. S. Trifonov
    • 2
    • 5
    • 6
  • R. B. Vasiliev
    • 3
    • 4
  1. 1.Department of Physics, Moscow State UniversityMoscowRussia
  2. 2.Scobeltsyn Institute of Nuclear Physics, Moscow State UniversityMoscowRussia
  3. 3.Department of Material Science, Moscow State UniversityMoscowRussia
  4. 4.Department of Chemistry, Moscow State UniversityMoscowRussia
  5. 5.Quantum Technology Center, Moscow State UniversityMoscowRussia
  6. 6.Kotel’nikov Institute of Radioengineering and Electronics, Russian Academy of SciencesMoscowRussia

Personalised recommendations