Moscow University Physics Bulletin

, Volume 73, Issue 6, pp 632–637 | Cite as

Spectroscopic Manifestation of Interaction of Humic Acids with Ferric Ions in Aqueous Solutions

  • D. A. Khundzhua
  • V. I. Yuzhakov
  • B. N. Korvatovskiy
  • V. Z. Paschenko
  • L. S. Kulyabko
  • K. A. Kydralieva
  • S. V. PatsaevaEmail author


Interaction of humiс substances with iron ions is of interest for studying migration pathways and the concentrations of elements in natural waters and for practical use of humiс substances as sorbents, as well as for environmental monitoring. In this work we studied the changes in the spectral luminescent properties and fluorescence kinetics of humic acids in water upon adding different concentrations of iron chloride, ammonium chloride and upon changing the pH of the solution. Conclusions about the influence of the humiс acids and iron concentrations, as well as the pH of the solution, on the interaction between ions of trivalent iron and humiс acids are drawn.


humic acids iron salts fluorescence spectra fluorescence quantum yield fluorescence decay kinetics 



This work was supported by the Russian Foundation for Basic Research (project nos. 18-016-00078 and 18-33-01270/18)


  1. 1.
    Humic Substances in the Biosphere, Ed. by D. S. Orlov (Moscow, Nauka, 1993), pp. 16–27.Google Scholar
  2. 2.
    J. H. Weber, in Humic Substances and Their Role in the Environment, Ed. by F. H. Frimmel, R. F. Christman, and J. M. Bracewell (Wiley, 1988), pp. 165–178.Google Scholar
  3. 3.
    M. Schnitzer and S. U. Khan, Humic Substances in the Environment (Marcel Decker, New York, 1972), pp. 12–17.Google Scholar
  4. 4.
    F. J. Stevenson, in Humic Substances in Soil, Sediment and Water, Ed. by G. R. Aiken, D. M. McKnight, P. MacCarthy, and R. L. Wershaw (Wiley, New York, 1985), pp. 13–52.Google Scholar
  5. 5.
    I. V. Perminova and K. Hatfield, in Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice, Ed. by I. V. Perminova, K. Hatfield, and N. Hertkorn (Springer, 2005), p. 3.Google Scholar
  6. 6.
    A. Linkhorst, T. Dittmar, and H. Waska, Environ. Sci. Technol. 51, 1312 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    M. Kida, O. Myangan, B. Oyuntsetseg, et al., Environ. Sci. Pollut. Res. 25, 11948 (2018).CrossRefGoogle Scholar
  8. 8.
    N. Senesi, in Organic Substances in Soil and Water. Natural Constituents and Their Influences on Contaminant Behaviour, Ed. by A. J. Beck, K. C. Jones, M. H. B. Hayes, and U. Mingelfrin (Royal Society of Chemistry, Cambridge, 1993), p. 73.Google Scholar
  9. 9.
    S. U. Khan, in Soil Organic Matter, Ed. by M. Schnitzer and S. U. Khan (Elsevier, 1975), pp. 137–171.Google Scholar
  10. 10.
    N. A. Kulikova, I. V. Perminova, and G. F. Lebedeva, Eurasian Soil Sci. 36, 1074 (2003).Google Scholar
  11. 11.
    V. A. Kholodov, N. A. Kulikova, and I. V. Perminova, Bulg. J. Ecol. Sci. 2 (3–4), 50 (2003).Google Scholar
  12. 12.
    G. M. Varshal and N. S. Buachidze, Zh. Anal. Khim. 83, 2155 (1983).Google Scholar
  13. 13.
    P. F. Landrum, R. N. Sheila, B. J. Eadie, et al., Environ. Toxicol. Chem. 6, 11 (1987).CrossRefGoogle Scholar
  14. 14.
    M. C. Black and J. F. McCarthy, Environ. Toxicol. Chem. 7, 593 (1988).CrossRefGoogle Scholar
  15. 15.
    J. -M. Bollag and K. Mayers, Sci. Total Environ. 117/118, 357 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    C. H. Watanabe, A. Monteiro, E. Gontijo, et al., Ecotoxicol. Environ. Saf. 139, 1 (2017).CrossRefGoogle Scholar
  17. 17.
    V. A. Kholodov, N. A. Kulikova, G. F. Lebedeva, et al., in Proc. 13th IHSS Meeting, Karlsruhe, 2006, p. 825.Google Scholar
  18. 18.
    A. A. Yurishcheva, K. A. Kydralieva, A. A. Zaripova, et al., J. Biol. Phys. Chem. 13, 61 (2013).CrossRefGoogle Scholar
  19. 19.
    D. Kulikowska, Z. M. Gusiatin, K. Bulkowska, and B. Klik, J. Hazard. Mater. 300, 882 (2015).CrossRefGoogle Scholar
  20. 20.
    A. Sundman, J. M. Byrne, I. Bauer, et al., Geochem. Trans. 18, 6 (2017).CrossRefGoogle Scholar
  21. 21.
    A. Yu. Polyakov, A. E. Gol’dt, T. A. Sorkina, et al., Perspekt. Mater. 9, 204 (2010).Google Scholar
  22. 22.
    A. D. Pomogailo, K. A. Kydralieva, A. A. Zaripova, et al., Macromol. Symp. 304, 18 (2011).CrossRefGoogle Scholar
  23. 23.
    E. Illés and E. Tombácz, J. Colloid Interface Sci. 295, 115 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    A. Hajdú, E. Illés, E. Tombácz, and I. Borbáth, Colloids Surf., A 347, 104 (2009).CrossRefGoogle Scholar
  25. 25.
    A. A. Yurishcheva, K. A. Kydralieva, M. N. Pukal’chik, et al., Ekol. Prom-st. Ross., No. 9, 50 (2011).Google Scholar
  26. 26.
    A. A. Yurishcheva, G. I. Dzhardimalieva, E. J. Kasymova, et al., Nanomech. Sci. Technol. 5, 323 (2014).Google Scholar
  27. 27.
    K. A. Kydralieva, G. I. Dzhardimalieva, A. A. Yurishcheva, and S. J. Jorobekova, J. Inorg. Organomet. Polym. Mater. 26, 1212 (2016).CrossRefGoogle Scholar
  28. 28.
    A. D. Pomogailo and V. N. Kestelman, Metallopolymer Nanocomposites (Springer, Heidelberg, 2005).Google Scholar
  29. 29.
    N. I. Chistyakova, A. A. Shapkin, T. V. Gubaidulina, et al., Hyperfine Interact. 226, 153 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    S. Burikov, T. Dolenko, N. Gorbunova, et al., in Functions of Natural Organic Matter in Chganging Environments, Ed. by J. Xu, J. Wu, and Y. He (Springer, 2013), Vol. 2, p. 799.Google Scholar
  31. 31.
    A. N. Drozdova, S. V. Patsaeva, and D. A. Khundzhua, Oceanology 57, 41 (2017).ADSCrossRefGoogle Scholar
  32. 32.
    D. A. Khundzhua, S. V. Patsaeva, O. A. Trubetskoj, and O. E. Trubetskaya, Moscow Univ. Phys. Bull. 72, 68 (2017). doi 10.3103/S002713491701009XADSCrossRefGoogle Scholar
  33. 33.
    M. Wagner, W. Schmidt, L. Imhof, et al., Water Res. 93, 98 (2016).CrossRefGoogle Scholar
  34. 34.
    R. Krachler, R. F. Krachler, G. Wallner, et al., Mar. Chem. 174, 85 (2015).CrossRefGoogle Scholar
  35. 35.
    W. Tian, Z. Yang, X. Zhang, et al., Environ. Sci. Pollut. Res. 25, 25734 (2018).CrossRefGoogle Scholar
  36. 36.
    S. Patsayeva and R. Reuter, Proc. SPIE 2586, 151 (1995).ADSCrossRefGoogle Scholar
  37. 37.
    V. I. Yuzhakov, V. V. Fadeev, and S. V. Patsaeva, Opt. Atmos. Okeana 7, 1577 (1994).Google Scholar
  38. 38.
    S. V. Patsaeva, V. V. Fadeev, E. M. Filippova, V. V. Chubarov, and V. I. Yuzhakov, Moscow Univ. Phys. Bull. 47 (5), 35 (1992).Google Scholar
  39. 39.
    D. A. Khundzhua, S. V. Patsaeva, V. A. Terekhova, and V. I. Yuzhakov, J. Spectrosc. 2013, 538608 (2013).CrossRefGoogle Scholar
  40. 40.
    O. Yu. Gosteva, A. A. Izosimov, S. V. Patsaeva, V. I. Yuzhakov, and O. S. Yakimenko, J. Appl. Spectrosc. 78, 884 (2012).ADSCrossRefGoogle Scholar
  41. 41.
    O. Yakimenko, D. Khundzhua, A. Izosimov, et al., J. Soils Sediments 18, 1279 (2018).CrossRefGoogle Scholar
  42. 42a.
    D. Shubina, O. Yakimenko, S. Patsaeva, et al., Voda: Khim. Ekol., No. 2, 22 (2010);Google Scholar
  43. 42b.
    D. Shubina, O. Yakimenko, S. Patsaeva, et al., Voda: Khim. Ekol., No. 3, 21 (2010).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • D. A. Khundzhua
    • 1
  • V. I. Yuzhakov
    • 1
  • B. N. Korvatovskiy
    • 2
  • V. Z. Paschenko
    • 2
  • L. S. Kulyabko
    • 3
  • K. A. Kydralieva
    • 3
    • 4
  • S. V. Patsaeva
    • 1
    Email author
  1. 1.Department of Physics, Moscow State UniversityMoscowRussia
  2. 2.Department of Biology, Moscow State UniversityMoscowRussia
  3. 3.Moscow Aviation InstituteMoscowRussia
  4. 4.Department of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations