Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 6, pp 696–701 | Cite as

Two-Field Cosmological Models with a Second Accelerated Expansion of the Universe

  • I. V. FominEmail author
ASTRONOMY, ASTROPHYSICS, AND COSMOLOGY
  • 1 Downloads

Abstract

The purpose of this paper is to consider cosmological models that contain two scalar fields. One field is inflaton, the other is the source of the observed accelerated expansion of universe at the present time. For the model that is considered in this work the corresponding chiral cosmological model was found and the metric of the space of the internal field is defined.

Keywords:

inflation scalar field chiral cosmological models 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for basic Research (project nos. 16-02-00488 A and 16-08-00618 A).

REFERENCES

  1. 1.
    A. A. Statobinsky, Phys. Lett. B 91, 99 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    A. H. Guth, Phys. Rev. D 23, 347 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    A. D. Linde, Phys. Lett. B 108, 389 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    M. V. Sazhin and O. S. Sazhina, Astron. Rep. 60, 425 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    V. F. Mukhanov and A. Vikman, J. Cosmol. Astropart. Phys. 2006 (02), 004 (2006).Google Scholar
  7. 7.
    D. Baumann and H. Peiris, Adv. Sci. Lett. 2, 105 (2009).CrossRefGoogle Scholar
  8. 8.
    L. P. Chimento, Phys. Rev. D 69, 123517 (2004).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    C. Armendariz-Picon et al., Phys. Rev. Lett. 85, 4438 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    T. Chiba, T. Okabe, and M. Yamaguchi, Phys. Rev. D 62, 023511 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    P. J. E. Peebles and A. Vilenkin, Phys. Rev. D 59, 063505 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    R. de Putter and E. V. Linder, Astropart. Phys. 28, 263 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    C. T. Byrnes and G. Tasinato, J. Cosmol. Astropart. Phys. 2009 (08), 016 (2009).Google Scholar
  14. 14.
    C. Boehmer, AIP Conf. Proc. 1122, 197 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    F. E. M. Costa, J. S. Alcaniz, and D. Jain, Phys. Rev. D 85, 107302 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    I. V. Fomin, J. Phys. Conf. Ser. 918, 012009 (2017).CrossRefGoogle Scholar
  17. 17.
    S. V. Chervon, Quantum Matter 2, 71 (2012).CrossRefGoogle Scholar
  18. 18.
    I. V. Fomin and S. V. Chervon, Russ. Phys. J. 60, 427 (2017).CrossRefGoogle Scholar
  19. 19.
    J. M. Aguirregabiria, L. P. Chimento, and R. Lazkoz, Phys. Lett. B 631, 93 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    V. Sahni and L. M. Wang, Phys. Rev. D 62, 103517 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    S. V. Chervon and I. V. Fomin, Gravitation Cosmol. 14, 163 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    V. N. Lukash, Phys.-Usp. 49, 103 (2006).CrossRefGoogle Scholar
  23. 23.
    P. A. R. Ade et al., Astron. Astrophys. 594, A13 (2016).CrossRefGoogle Scholar
  24. 24.
    P. P. Avelino et al., Phys. Rev. D 82, 063534 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Laboratory of Electrodynamics of Moving Media, Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations