Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 5, pp 462–469 | Cite as

Improved Generation of Higher Harmonics and Suppression of the Lowest Harmonics in an X-Ray FEL with a Two-Frequency Undulator

  • K. V. ZhukovskyEmail author
THEORETICAL AND MATHEMATICAL PHYSICS
  • 14 Downloads

Abstract

Theoretical research and simulation of the suppression of the lowest harmonics of free-electron laser radiation (FEL) with a two-frequency undulator was carried out. A phenomenological model of an FEL that describes the evolution of power in an FEL considering all the main losses was used. Radiation of harmonics in an FEL with a two-frequency flat undulator is compared with the radiation of harmonics in an FEL with an ordinary flat undulator. Radiation of harmonics and the FEL-induced energy spread in a single-pass FEL, where harmonics that are lower with respect to the nth harmonic are suppressed, for example, by a shift of the electron phase relative to photons by kπ/n, k = even, between the undulator walls were investigated. The advantages of using a two-frequency undulator in an FEL with suppressed lowest harmonics and the possibility of generating high-power X-ray radiation of higher harmonics in a linear mode are illustrated. The power of the higher harmonics can exceed the pitch power of an ordinary FEL with a flat undulator.

Keywords:

undulator radiation harmonic generation free-electron laser (FEL) two-frequency undulator  phase shift. 

Notes

ACKNOWLEDGMENTS

We thank Professor A.V. Borisov, Professor V.Ch. Zhukovskii, Professor A. N. Vasil’ev, and Leading Researcher A.E. Lobanov for useful discussions.

REFERENCES

  1. 1.
    V. G. Bagrov et al., Theory of Emission of Relativistic Particles, Ed. by V.A. Bordovitsyn (Fizmatlit, Moscow, 2002).Google Scholar
  2. 2.
    V. G. Bagrov, I. M. Ternov, and B. V. Kholomai, Emission of Relativistic Electrons in a Longitudinal Periodic Electric Field of a Crystal (Akad. Nauk SSSR, Tomsk, 1987).Google Scholar
  3. 3.
    V. L. Ginzburg, Akad. Nauk SSSR, Ser. Fiz. 11, 1651 (1947).Google Scholar
  4. 4.
    H. Motz, W. Thon, and R. N. J. Whitehurst, Appl. Phys. 24, 826 (1953).CrossRefGoogle Scholar
  5. 5.
    L. A. Artsimovich and I. Ya. Pomeranchuk, Zh. Eksp. Teor. Fiz. 16, 379 (1946).Google Scholar
  6. 6.
    I. M. Ternov, V. V. Mikhailin, and V. R. Khalilov, Synchrotron Radiation and Its Applications (Mosk. Gos. Univ., Moscow, 1980).Google Scholar
  7. 7.
    D. F. Alferov, Yu. A. Bashmakov, and E. G. Bessonov, Zh. Tekh. Fiz. 18, 1336 (1974).Google Scholar
  8. 8.
    D. F. Alferov, Yu. A. Bashmakov, and P. A. Cherenkov, Sov. Phys. Usp. 32, 200 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    V. I. Alexeev and E. G. Bessonov, Nucl. Instrum. Methods Phys. Res., Sect. A 308, 140 (1991).Google Scholar
  10. 10.
    B. W. J. McNeil and N. R. Thompson, Nat. Photonics 4, 814 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    C. Pellegrini, A. Marinelli, and S. Reiche, Rev. Mod. Phys. 88, 015006 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    Z. Huang and K. J. Kim, Phys. Rev. Spec. Top.–Accel. Beams 10, 034801 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, The Physics of Free Electron Lasers (Springer, 2000).CrossRefGoogle Scholar
  14. 14.
    R. Bonifacio, C. Pellegrini, and L. Narducci, Opt. Commun. 50, 373 (1984).ADSCrossRefGoogle Scholar
  15. 15.
    P. Schmüser, M. Dohhis, J. Rossbach, and C. Behrens, Free-Electron Lasers in the Ultraviolet and X-Ray Regime: Physical Principles, Experimental Results, Technical Realization (Springer, 2014).CrossRefGoogle Scholar
  16. 16.
    C. Pellegrini, Phys. Scr. 2016, 014004 (2016).CrossRefGoogle Scholar
  17. 17.
    J. M. J. Madey, J. Appl. Phys. 42, 1906 (1971).ADSCrossRefGoogle Scholar
  18. 18.
    L. R. Elias et al., Phys. Rev. Lett. 36, 717 (1976).ADSCrossRefGoogle Scholar
  19. 19.
    D. A. Deacon et al., Phys. Rev. Lett. 38, 892 (1977).ADSCrossRefGoogle Scholar
  20. 20.
    N. M. Kroll and W. A. McMullin, Phys. Rev. A 17, 300 (1978).ADSCrossRefGoogle Scholar
  21. 21.
    W. B. Colson, Nucl. Instrum. Methods Phys. Res., Sect. A 393, 82 (1997).Google Scholar
  22. 22.
    P. Sprangle and R. A. Smith, Phys. Rev. A 21, 293 (1980).ADSCrossRefGoogle Scholar
  23. 23.
    R. Bonifacio, C. Pellegrini, and L. Narducci, Opt. Commun. 50, 373 (1984).ADSCrossRefGoogle Scholar
  24. 24.
    K. J. Kim and M. Xie, Nucl. Instrum. Methods Phys. Res., Sect. A 331, 359 (1993).Google Scholar
  25. 25.
    L.-H. Yu et al., Science 289, 932 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    L.-H. Yu, Phys. Rev. A 44, 5178 (1991).ADSCrossRefGoogle Scholar
  27. 27.
    E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, Opt. Commun. 202, 169 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    T. Shaftan and L.-H. Yu, Phys. Rev. E 71, 046501 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    H.-T. Li and Q.-K. Jia, Chin. Phys. C 37, 028102 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    H.-X. Deng and Z.-M. Dai, Chin. Phys. C 37, 102001 (2013).ADSCrossRefGoogle Scholar
  31. 31.
    H.-X. Deng and Z.-M. Dai, Chin. Phys. C 34, 1140 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    Z. Ling et al., Chin. Phys. C 40, 098102 (2016).ADSCrossRefGoogle Scholar
  33. 33.
    K. V. Zhukovsky, Moscow Univ. Phys. Bull. 70, 232 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    K. Zhukovsky, J. Electromagn. Waves Appl. 29, 132 (2015).CrossRefGoogle Scholar
  35. 35.
    K. Zhukovsky, J. Electromagn. Waves Appl. 28, 1869 (2014).CrossRefGoogle Scholar
  36. 36.
    K. Zhukovsky, Laser Part. Beams 34, 447 (2016).ADSCrossRefGoogle Scholar
  37. 37.
    G. Mishra, M. Gehlot, and J.-K. Hussain, Nucl. Instrum. Methods Phys. Res., Sect. A 603, 495 (2009).Google Scholar
  38. 38.
    G. Dattoli, V. V. Mikhailin, P. L. Ottaviani, and K. Zhukovsky, J. Appl. Phys. 100, 084507 (2006).ADSCrossRefGoogle Scholar
  39. 39.
    G. Dattoli, N. S. Mirian, E. Di Palma, and V. Petrillo, Phys. Rev. Spec. Top.–Accel. Beams 17, 050702 (2014).ADSCrossRefGoogle Scholar
  40. 40.
    T. Shintake, Nat. Photonics 2, 555 (2008).CrossRefGoogle Scholar
  41. 41.
    L.-H. Yu et al., Phys. Rev. Lett. 91, 074801 (2003).ADSCrossRefGoogle Scholar
  42. 42.
    B. McNeil, Nat. Photonics 2, 522 (2008).ADSCrossRefGoogle Scholar
  43. 43.
    K. Tiedtke et al., New J. Phys. 11, 023029 (2009).ADSCrossRefGoogle Scholar
  44. 44.
    E. A. Seddon et al., Rep. Prog. Phys. 80, 115901 (2017).ADSCrossRefGoogle Scholar
  45. 45.
    E. L. Saldin et al., New J. Phys. 12, 035010 (2010).ADSCrossRefGoogle Scholar
  46. 46.
    M. Quattromini et al., hys. Rev. Spec. Top.–Accel. Beams 15, 080704 (2012).Google Scholar
  47. 47.
    R. P. Walker, Nucl. Instrum. Methods Phys. Res., Sect. A 335, 328 (1993).Google Scholar
  48. 48.
    N. A. Vinokurov and E. B. Levichev, Phys.-Usp. 58, 850 (2015).CrossRefGoogle Scholar
  49. 49.
    H. Onuki and P. Elleaume, Undulators, Wigglers and Their Applications (Taylor & Francis, New York, 2003).CrossRefGoogle Scholar
  50. 50.
    G. Dattoli and P. L. Ottaviani, Opt. Commun. 204, 283 (2002).ADSCrossRefGoogle Scholar
  51. 51.
    G. Dattoli, P. L. Ottaviani, and S. Pagnutti, J. Appl. Phys. 97, 113102 (2005).ADSCrossRefGoogle Scholar
  52. 52.
    G. Dattoli, L. Giannessi, P. L. Ottaviani, and C. Ronsivalle, J. Appl. Phys. 95, 3206 (2004).ADSCrossRefGoogle Scholar
  53. 53.
    K. Zhukovsky, Nucl. Instrum. Methods Phys. Res., Sect. B 369, 9 (2016).Google Scholar
  54. 54.
    K. Zhukovsky, Opt. Commun. 353, 35 (2015).ADSCrossRefGoogle Scholar
  55. 55.
    K. Zhukovsky and I. Potapov, Laser Part. Beams 35, 326 (2017).ADSCrossRefGoogle Scholar
  56. 56.
    F. De Martini, in Laser Handbook, Ed. by W. B. Colson, C. Pellegrini, and A. Renieri (North-Holland, Amsterdam, 1990), Vol. 6, p. 195.Google Scholar
  57. 57.
    R. Bonifacio, L. De Salvo, and P. Pierini, Nucl. Instrum. Methods Phys. Res., Sect. A 293, 627 (1990).Google Scholar
  58. 58.
    Z. Huang and K.-J. Kim, Phys. Rev. E 62, 7295 (2000).ADSCrossRefGoogle Scholar
  59. 59.
    K. Zhukovsky, EPL 119, 34002 (2017).ADSCrossRefGoogle Scholar
  60. 60.
    K. V. Zhukovsky, Russ. Phys. J. 60, 1630 (2018).CrossRefGoogle Scholar
  61. 61.
    K. V. Zhukovsky, Russ. Phys. J. 61, 278 (2018).CrossRefGoogle Scholar
  62. 62.
    K. Zhukovsky, J. Phys. D: Appl. Phys. 50, 505601 (2017).CrossRefGoogle Scholar
  63. 63.
    K. Zhukovsky, J. Appl. Phys. 122, 233103 (2017).ADSCrossRefGoogle Scholar
  64. 64.
    B. W. J. McNeil, G. R. M. Robb, M. W. Poole, and N. R. Thompson, Phys. Rev. Lett. 96, 084801 (2006).ADSCrossRefGoogle Scholar
  65. 65.
    E. A. Schneidmiller and M. V. Yurkov, Phys. Rev. Spec. Top.–Accel. Beams 15, 080702 (2012).ADSCrossRefGoogle Scholar
  66. 66.
    M. Altarelli et al., Report No. XFEL.EUAR-2016 (European X-Ray Free-Electron Laser Facility, 2016).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations