Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 5, pp 534–541 | Cite as

Motion Modeling of Two Linked Satellites in the Earth’s Gravitational Field for Solving Gravimetric Problems

  • A. S. Zhamkov
  • V. E. Zharov
ASTRONOMY, ASTROPHYSICS, AND COSMOLOGY

Abstract

Motion modeling of two low-orbit linked satellites for measuring the Earth’s gravitational field parameters is presented. The model takes the factors that affect the satellite motion into account, such as nonspherical geopotential, atmospheric drag, tides, and third-body effects from the Moon, Sun, and planets of the Solar System. As a result of modeling, a search for the optimal configuration of satellites for completion of scientific tasks and possibility of technical realization is performed.

Keywords:

gravitational field of the Earth nonsphericity of geopotential spacecraft low-Earth orbit. 

Notes

REFERENCES

  1. 1.
    G. Balmino, Space Sci. Rev. 108, 47 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    P. T. Bond, Astron. Geophys. 44, 5.4 (2003). https://doi.org/ doi 10.1093/astrog/44.5.5.4-aGoogle Scholar
  3. 3.
    Zh. Kang et al., J. Geod. 80, 322 (2006). https://doi.org/ doi 10.1007/s00190-006-0073-5ADSCrossRefGoogle Scholar
  4. 4.
    N. Darbeheshti et al., Earth Syst. Sci. Data 9, 833 (2017). https://dx.doi.org/ doi 10.5194/essd-9-833-2017ADSCrossRefGoogle Scholar
  5. 5.
    F. Flechtner et al., in Gravity, Geoid and Height Systems, Ed. by U. Marti (Springer, Cham, 2014), p. 117. https://doi.org/ doi 10.1007/978-3-319-10837-7_1510.1007/978-3-319-10837-7_15Google Scholar
  6. 6.
    F. Flechtner et al., in Remote Sensing and Water Resources, Ed. by A. Cazenave, N. Champollion, J. Benveniste, and J. Chen (Springer, Cham, 2016), p. 263. https://doi.org/ doi 10.1007/978-3-319-32449-4_1110.1007/978-3-319-32449-4_11Google Scholar
  7. 7.
    C. Reigber, in Theory of Satellite Geodesy and Gravity Field Determination, Ed. by F. Sansò and R. Rummel (Springer, 1989), p. 197.Google Scholar
  8. 8.
    O. Montenbruck and E. Gill, Satellite Orbits. Models, Methods, and Applications (Springer, 2000).CrossRefzbMATHGoogle Scholar
  9. 9.
    I. E. Cunningham, Celestial Mech. 2, 207 (1970).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Belikov and K. Taibatorov, Kinematika Fiz. Nebesnykh Tel 6 (2), 24 (1990).ADSMathSciNetGoogle Scholar
  11. 11.
    http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html.Google Scholar
  12. 12.
    V. E. Zharov, Spherical Astronomy (Moscow, 2006).Google Scholar
  13. 13.
    IERS Conventions (2010), Ed. by G. Petit and B. Luzum (Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, 2010).Google Scholar
  14. 14.
    B. D. Tapley, B. E. Schutz, and G. H. Born, Statistical Orbit Determination (Elsevier, 2004).Google Scholar
  15. 15.
    https://www.aviso.altimetry.fr/en/data/products/auxiliarv-products/global-tide-fes/description-fes2004.html.Google Scholar
  16. 16.
    S. Desai, J. Geophys. Res. 107, 3186 (2002). doi 10.1029/2001JC001224ADSCrossRefGoogle Scholar
  17. 17.
    http://www.nrl.navy.mil/research/nrl-review/2003/atmospheric-science/picone/.Google Scholar
  18. 18.
    http://sol.spacenvironment.net/jb2008/indices.html.Google Scholar
  19. 19.
    C. Reigber et al., J. Geod. 39, 1 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    B. L. Panteleev, Theory of the Figure of the Earth (Mosk. Gos. Univ., Moscow, 2000).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of Physics, Moscow State UniversityMoscowRussia

Personalised recommendations