Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 5, pp 457–461 | Cite as

Nonlinear Electrodynamic Birefringence in a Multipole Magnetic Field

  • M. I. Vasili’evEmail author
  • M. G. GapochkaEmail author
  • I. P. Denisova
  • O. V. KechkinEmail author
THEORETICAL AND MATHEMATICAL PHYSICS
  • 16 Downloads

Abstract

A nonlinear electrodynamic change in the phase of an electromagnetic wave after passing through a hexapole magnetic field is determined. It is shown that any pulse of electromagnetic radiation changes its initial polarization due to vacuum nonlinear electrodynamics equations. The front and back of the pulse with the length of cτ are linearly polarized in mutually orthogonal planes; the part enclosed between them, in the general case, becomes an elliptically polarized wave.

Keywords:

vacuum nonlinear electrodynamics hexapole field normal modes. 

Notes

REFERENCES

  1. 1.
    W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).ADSCrossRefGoogle Scholar
  2. 2.
    M. Born and L. Infeld, Proc. R. Soc. London, Ser. A 144, 425 (1934).ADSCrossRefGoogle Scholar
  3. 3.
    B. Podolsky, Phys. Rev. B 62, 68 (1942).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    P. Gaete and J. Helayël-Neto, Eur. Phys. J. C 74, 3182 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    V. I. Denisov, E. E. Dolgaya, V. A. Sokolov, and I. P. Denisova, Phys. Rev. D 96, 036008 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    H. H. Soleng, Phys. Rev. D 52, 6178 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    M. Novello, S. E. Perez Bergliaffa, and J. Salim, Phys. Rev. D 69, 127301 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    S. I. Kruglov, Phys. Rev. D 92, 123523 (2015).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    V. I. Denisov and V. A. Sokolov, J. Exp. Theor. Phys. 113, 926 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    F. Karbstein, H. Gies, M. Reuter, and M. Zepf, Phys. Rev. D 92, 071301(R) (2015).Google Scholar
  11. 11.
    V. I. Denisov, I. P. Denisova, and S. I. Svertilov, Theor. Math. Phys. 135, 720 (2003).CrossRefGoogle Scholar
  12. 12.
    M. Abishev, Y. Aimuratov, Y. Aldabergenov, N. Beissen, et al., Astropart. Phys. 73, 8 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    V. I. Denisov and I. P. Denisova, Theor. Math. Phys. 129, 1421 (2001).CrossRefGoogle Scholar
  14. 14.
    Yu. N. Gnedin, N. A. Silant’ev, and M. Yu. Piotrovich, Astron. Lett. 32, 96 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    R. W. Bussard, S. G. Alexander, and P. Meszaros, Phys. Rev. D 34, 440 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    P. A. Vshivtseva, V. I. Denisov, and I. P. Denisova, Dokl. Phys. 47, 798 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    W.-T. Ni, H.-H. Mei, and S.-J. Wu, Mod. Phys. Lett. A 28, 1340013 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    W.-Y. Tsai and T. Erber, Phys. Rev. D 12, 1132 (1975).ADSCrossRefGoogle Scholar
  19. 19.
    V. I. Denisov and I. P. Denisova, Opt. Spectrosc. 90, 928 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    C. Palomba, Astron. Astrophys. 354, 163 (2000).ADSGoogle Scholar
  21. 21.
    V. I. Denisov, B. N. Shvilkin, V. A. Sokolov, and M. I. Vasili’ev, Phys. Rev. D 94, 045021 (2016).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    V. I. Denisov, I. P. Denisova, A. B. Pimenov, and V. A. Sokolov, Eur. Phys. J. C 76, 612 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    D. Lai and W. C. G. Ho, Phys. Rev. Lett. 91, 071101 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    M. G. Gapochka, M. M. Denisov, I. P. Denisova, N. V. Kalenova, and A. F. Korolev, Comput. Math. Math. Phys. 55, 1857 (2015).MathSciNetCrossRefGoogle Scholar
  25. 25.
    V. I. Denisov, V. A. Sokolov, and M. I. Vasili’ev, Phys. Rev. D 90, 023011 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    R. Taverna, R. Turolla, D. G. Caniulef, et al., Mon. Not. R. Astron. Soc. 454, 3254 (2015).ADSCrossRefGoogle Scholar
  27. 27.
    V. I. Denisov, Theor. Math. Phys. 132, 1071 (2002).CrossRefGoogle Scholar
  28. 28.
    Yu. N. Gnedin, N. A. Silant’ev, and P. S. Shternin, Astron. Lett. 32, 39 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    V. I. Denisov, V. A. Sokolov, and S. I. Svertilov, J. Cosmol. Astropart. Phys. 09, 004 (2017).Google Scholar
  30. 30.
    V. I. Denisov, E. E. Dolgaya, and V. A. Sokolov, J. High Energy Phys. 5, 105 (2017).ADSCrossRefGoogle Scholar
  31. 31.
    M. I. Vasili’ev, V. I. Denisov, A. V. Kozar’, and P. A. Tomasi-Vshivtseva, Moscow Univ. Phys. Bull. 72, 513 (2017).ADSCrossRefGoogle Scholar
  32. 32.
    J. Pétri, Mon. Not. R. Astron. Soc. 450, 714 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of Computer Mathematics, Moscow Aviation Institute (National Research University)MoscowRussia
  2. 2.Department of Physics, Moscow State UniversityMoscowRussia
  3. 3.Department of Electromagnetic Processes and Atomic Nuclei Interactions, Skobeltsyn Institute of Nuclear Physics, Moscow State UniversityMoscowRussia

Personalised recommendations