Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 5, pp 501–506 | Cite as

The Degree of Air Ionization in а Plasma of а Non-Stationary Pulsating Discharge in Subsonic and Supersonic Flows

  • V. M. ShibkovEmail author
  • L. V. Shibkova
  • A. A. Logunov
CHEMICAL PHYSICS, PHYSICAL KINETICS, AND PLASMA PHYSICS
  • 20 Downloads

Abstract

The ionization degree of the plasma in a nonstationary pulsating discharge created by a stationary power source in subsonic and supersonic airflows has been determined. lt was experimentally found that the electron density in the plasma near electrodes varies from 1015 to 3.7 × 1016 cm–3 and the gas temperature increases from 400 to 1250 K when the flow velocity varies from 150 to 520 m/s at a constant discharge current of 15.5 A. It is shown that the gas ionization degree in the pulsating discharge plasma is on the order of l0–4 at low subsonic airflow velocities, while with the increase in the flow rate it increases sharply and reaches the value of 10–2 at the velocity of 500 m/s.

Keywords:

supersonic airflow discharge pulsating in the flow low-temperature plasma electron density ionization degree. 

Notes

REFERENCES

  1. 1.
    V. I. Alferov and L. S. Bushmin, J. Exp. Theor. Phys. 17, 1190 (1963).Google Scholar
  2. 2.
    V. I. Alferov, A. S. Bushmin, and B. V. Kalachev, J. Exp. Theor. Phys. 24, 859 (1967).ADSGoogle Scholar
  3. 3.
    V. I. Alferov, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 163 (2004).Google Scholar
  4. 4.
    A. P. Ershov, O. S. Surkont, I. B. Timofeev, V. M. Shibkov, and V. A. Chernikov, High Temp. 42, 516 (2004). doi 10.1023/B:HITE.0000039979.89955.dfCrossRefGoogle Scholar
  5. 5.
    A. P. Ershov, O. S. Surkont, I. B. Timofeev, V. M. Shibkov, and V. A. Chernikov, High Temp. 42, 667 (2004). doi 10.1023/B:HITE.0000046519.53287.47CrossRefGoogle Scholar
  6. 6.
    A. P. Ershov, A. V. Kalinin, O. S. Surkont, K. B. Timofeev, V. M. Shibkov, and V. A. Chernikov, High Temp. 42, 865 (2004). doi 10.1007/s10740-005-0005-8CrossRefGoogle Scholar
  7. 7.
    V. M. Shibkov, L. V. Shibkova, and A. A. Logunov, Plasma Phys. Rep. 43, 373 (2017). doi 10.1134/S1063780X17030114ADSCrossRefGoogle Scholar
  8. 8.
    V. M. Shibkov, L. V. Shibkova, and A. A. Logunov, Moscow Univ. Phys. Bull. 72, 294 (2017). doi 10.3103/S0027134917030109ADSCrossRefGoogle Scholar
  9. 9.
    V. M. Shibkov, L. V. Shibkova, and A. A. Logunov, Plasma Phys. Rep. 44, 746 (2018). doi 10.1134/S1063780X18080056ADSCrossRefGoogle Scholar
  10. 10.
    P. V. Kopyl, O. S. Surkont, V. M. Shibkov, and L. V. Shibkova, Plasma Phys. Rep. 38, 503 (2012). doi 10.1134/S1063780X12050054ADSCrossRefGoogle Scholar
  11. 11.
    R. S. Konstantinovskii, V. M. Shibkov, and L. V. Shibkova, Kinet. Catal. 46, 775 (2005). doi 10.1007/s10975-005-0136-2CrossRefGoogle Scholar
  12. 12.
    S. M. Starikovskaya, J. Phys. D: Appl. Phys. 39, R265 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    A. Y. Starikovskii, N. B. Anikin, I. N. Kosarev, E. I. Mintoussov, M. M. Nudnova, A. E. Rakitin, D. V. Roupassov, S. M. Starikovskaia, and V. P. Zhukov, J. Propul. Power 24, 1182 (2008).CrossRefGoogle Scholar
  14. 14.
    I. V. Adamovich, W. R. Lempert, J. W. Rich, and Y. G. Utkin, J. Propul. Power 24, 1198 (2008).CrossRefGoogle Scholar
  15. 15.
    V. M. Shibkov, A. F. Aleksandrov, V. A. Chernikov, A. P. Ershov, and L. V. Shibkova, J. Propul. Power 25, 123 (2009). doi 10.2514/1.24803CrossRefGoogle Scholar
  16. 16.
    S. Yu. Kazantsev, I. G. Kononov, I. A. Kossyi, N. M. Tarasova, K. N. Firsov, Fiz. Plazmy 35 (3), 281 (2009).Google Scholar
  17. 17.
    N. L. Aleksandrov, S. V. Kindysheva, E. N. Kukaev, S. M. Starikovskaya, and A. Yu. Starikovskii, Plasma Phys. Rep. 35, 867 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    V. M. Shibkov, L. V. Shibkova, V. G. Gromov, A. A. Karachev, and R. S. Konstantinovskii, High Temp. 49, 155 (2011). doi 10.1134/S0018151X11020143CrossRefGoogle Scholar
  19. 19.
    V. M. Shibkov and L. V. Shibkova, Tech. Phys. 54, 1467 (2009). doi 10.1134/S1063784209100107CrossRefGoogle Scholar
  20. 20.
    V. M. Shibkov and L. V. Shibkova, Tech. Phys. 55, 58 (2010). doi 10.1134/S106378421001010XCrossRefGoogle Scholar
  21. 21.
    N. O. Arkhipov, I. A. Znamenskaya, I. V. Mursenkova, I. Yu. Ostapenko, and N. N. Sysoev, Moscow Univ. Phys. Bull. 69, 96 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    K. Artem’ev, S. Yu. Kazantsev, N. G. Kononov, L. A. Kossyi, N. I. Malykh, N. A. Popov, N. M. Tarasova, E. A. Filimonova, and K. N. Firsov, J. Phys. D: Appl. Phys. 46, 055201 (2013). doi 10.1088/0022-3727/46/5/055201ADSCrossRefGoogle Scholar
  23. 23.
    S. B. Leonov, D. A. Yarantsev, A. P. Napartovich, and I. V. Kochetov, IEEE Trans. Plasma Sci. 34, 2514 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    L. S. Jacobsen, C. D. Carter, T. A. Jackson, S. Williams, and J. Barnet, J. Propul. Power 24, 641 (2008).CrossRefGoogle Scholar
  25. 25.
    V. M. Shibkov, A. F. Aleksandrov, A. P. Ershov, I. B. Timofeev, V. A. Chernikov, and L. V. Shibkova, Plasma Phys. Rep. 31, 795 (2005). doi 10.1134/1.2048839ADSCrossRefGoogle Scholar
  26. 26.
    V. M. Shibkov, A. P. Ershov, V. A. Chernikov, and L. V. Shibkova, Tech. Phys. 50, 455 (2005).CrossRefGoogle Scholar
  27. 27.
    V. M. Shibkov, S. A. Dvinin, A. P. Ershov, and L. V. Shibkova, Tech. Phys. 50, 462 (2005).CrossRefGoogle Scholar
  28. 28.
    V. M. Shibkov, L. V. Shibkova, and A. A. Karachev, High Temp. 47, 620 (2009). doi 10.1134/S0018151X09050022CrossRefGoogle Scholar
  29. 29.
    A. F. Aleksandrov, A. A. Kuzovnikov, and V. M. Shibkov, J. Eng. Phys. Thermophys. 62, 519 (1992).CrossRefGoogle Scholar
  30. 30.
    A. F. Aleksandrov, V. M. Shibkov, and L. V. Shibkova, High Temp. 48, 611 (2010). doi 10.1134/S0018151X10050019CrossRefGoogle Scholar
  31. 31.
    G. N. Abramovich, Applied Gas Dynamics, 4th ed. (Nauka, Moscow, 1976).Google Scholar
  32. 32.
    Plasma Diagnostics, Ed. by W. Lochte-Holtgreven (Wiley, New York, 1968).Google Scholar
  33. 33.
    A. S. Zarin, A. A. Kuzoviikov, and V. M. Shibkov, Freely Localized Microwave Discharge in Air (Neft’ i Gaz, Moscow, 1996).Google Scholar
  34. 34.
    L. V. Shibkova and V. M. Shibkov, Discharge in Mixtures of Inert Gases (Fizmatlit, Moscow, 2005).Google Scholar
  35. 35.
    J. J. Olivero and R. L. Longbothum, J. Quant. Spectrosc. Radiat. Transfer 17, 233 (1977).ADSCrossRefGoogle Scholar
  36. 36.
    N. T. Pashchenko and Yu. P. Raizer, Fiz. Plazmy 8, 1086 (1982).ADSGoogle Scholar
  37. 37.
    V. V. Zlobin, A. A. Kuzovnikov, and V. M. Shibkov, Vestn. Mosk. Univ. Fiz. Astron. 29 (1), 89 (1988).Google Scholar
  38. 38.
    V. M. Shibkov, High Temp. 35, 681 (1997).Google Scholar
  39. 39.
    V. M. Shibkov, High Temp. 35, 858 (1997).Google Scholar
  40. 40.
    A. M. Devyatov, A. A. Kuzovnikov, V. V. Lodinev, and V. M. Shibkov, Vestn. Mosk. Univ. Fiz. Astron. 32 (2), 29 (1991).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. M. Shibkov
    • 1
    Email author
  • L. V. Shibkova
    • 1
  • A. A. Logunov
    • 1
  1. 1.Department of Physics, Moscow State UniversityMoscowRussia

Personalised recommendations