Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 5, pp 482–485 | Cite as

Mechanical Properties of Y2Al Crystal

  • Tahsin Özer
  • Muhammet Karataşli
CONDENSED MATTER PHYSICS
  • 21 Downloads

Abstract

Using density functional theory (DFT) calculations, we study the structural parameters and mechanic properties of Y2Al compound. The independent elastic constants of Y2Al compound were calculated and the results show that Y2Al compound is mechanically stable. Some polycrystalline quantities such as the bulk and shear moduli, Young’s modulus, and Poisson’s ratio of Y2Al compound were derived from calculated elastic constants. The obtained results were compared with the existing experimental and other theoretical data.

Keywords:

Y2Al DFT elastic constants anisotropy 

REFERENCES

  1. 1.
    G. Borzone, A. Ciccioli, P. L. Cignini, M. Ferrinia, and D. Gozzi, Intermetallics 8, 203 (2000).CrossRefGoogle Scholar
  2. 2.
    K. Ikeda, N. Watanabe, S. Kato, T. Sato, Y. Nakamori, and S. Orimo, J. Alloys Compd. 471, L13 (2009).CrossRefGoogle Scholar
  3. 3.
    L. Zeng and S. Wang, J. Alloys Compd. 351, 176 (2003).CrossRefGoogle Scholar
  4. 4.
    K. A. Gschneidner, Jr. and F. W. Calderwood, Bull. Alloy Phase Diagrams 10, 44 (1989).CrossRefGoogle Scholar
  5. 5.
    P. Villars, K. Cenzual, and R. Gladyshevskii, Handbook of Inorganic Substances (De Gruyter, 2014).Google Scholar
  6. 6.
    V. S. Sudavtsova, M. A. Shevchenko, N. V. Kotova, and L. A. Romanova, Russ. J. Phys. Chem. A 85, 1 (2011).CrossRefGoogle Scholar
  7. 7.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. I. Chiarotti, M. Cococcioni, I. Dabo, et al., J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
  8. 8.
    J. P. Perdew, K. Burke, and M. Emzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Golesorkhtabar, P. Pavonea, J. Spitaler, P. Puschnig, and C. Draxl, Comput. Phys. Commun. 184, 1861 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    O. Beckstein, J. E. Klepeis, G. L. W. Hart, and O. Pankratov, Phys. Rev. B 63, 134112 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and O. Erikson, J. Appl. Phys. 84, 4891 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    D. Connetable and O. Thomas, Phys. Rev. B 79, 094101 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    T. Ozer and S. Cabuk, J. Mol. Model. 24, 66 (2018).CrossRefGoogle Scholar
  15. 15.
    R. A. Serway, R. J. Beichner, and J. W. Jewett, Physics for Scientists and Engineers (Saunders College Publ., Fort Worth, 2000).Google Scholar
  16. 16.
    Q. Liu, Z. Liu, L. Feng, and H. Tian, Comput. Mater. Sci. 50, 2822 (2011).CrossRefGoogle Scholar
  17. 17.
    R. Hill, Proc. Phys. Soc., London, Sect. A 65, 349 (1952).Google Scholar
  18. 18.
    W. Voight, Lehrbuch Der Kristallphysik, 2nd ed. (Teubner, Leipzig, 1928), pp. 716–761.Google Scholar
  19. 19.
    A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929).CrossRefGoogle Scholar
  20. 20.
    X. Q. Chen, H. Niu, D. Li, and Y. Li, Intermetallics 19, 1275 (2011).CrossRefGoogle Scholar
  21. 21.
    H. Özışık, PhD Thesis (Gazi Univ. Graduate School of Natural and Applied Sciences, Ankara, 2011).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Tahsin Özer
    • 1
  • Muhammet Karataşli
    • 2
  1. 1.Osmaniye Korkut Ata University Bahçe Vocational Hight SchoolOsmaniyeTurkey
  2. 2.Çukurova University Faculty of Arts and SciencesAdanaTurkey

Personalised recommendations