Moscow University Physics Bulletin

, Volume 73, Issue 5, pp 551–557 | Cite as

Assessment of the Relative Roles of Viscoelastic Relaxation and Postseismic Creep in the Area of the Simushir Earthquake of November 15, 2006, Using Space Geodesy and Gravimetry

  • V. O. MikhailovEmail author
  • M. DiamentEmail author
  • E. P. Timoshkina
  • S. A. Khairetdinov


The GRACE satellites have been operating in space for more than 15 years. Over this period, not only unique time series of monthly models were accumulated, but also the methods for data processing and suppression of different errors, primarily related to different sensitivity along and across the orbit, were substantially improved. This allowed the number of spherical harmonics in the GRACE monthly models to be increased from 40 up to 80 and even 96. This, in particular, opened new opportunities for investigating postseismic processes in the regions of major earthquakes. In this paper we discuss possible geodynamic processes that may be responsible for the growth of a positive gravity-field anomaly after the Simushir earthquake on November 15, 2006. The growth started a few months after this event and coincided in time with the activation of seismicity on the continuation of the zone of the coseismic rupture in depth. Numerical simulation using data from GPS stations and temporal variations of the gravity field has shown that the viscoelastic relaxation of stresses resulting from an earthquake plays a subordinate role. The main process that is responsible for postseismic displacements and the growth of the gravity anomaly is the postseismic creep in a vast zone around the coseismic rupture, including its continuation to a depth of 100 km.


GRACE satellite temporal variations gravity field earthquakes postseismic relaxation Simushir earthquake. 



The authors are grateful to their colleagues from GRGS/CNES for the data and consultations on issues of the construction of the satellite gravity models. The authors thank F. Pollitz (United States Geological Survey) for the granted program codes. The development of techniques for the GRACE data calibration and the seismic cycle simulation using the Static1D and Visco1D program packages was supported by the Russian Foundation for Basic Research (grant no. 18-05-00159). Calculations using real data were performed within the state assignment on subject 0144-2014-00105.


  1. 1.
    J. Kusche, J. Geod. 81, 733 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    S. Lorito, A. Piatanesi, V. Cannelli, F. Romano, et al., J. Geophys. Res. 115, B02304 (2010). doi 10.1029/2008JB005974ADSCrossRefGoogle Scholar
  3. 3.
    F. F. Pollitz, Geophys. J. Int. 125, 1 (1996).CrossRefGoogle Scholar
  4. 4.
    V. Mikhailov, S. Tikhotsky, M. Diament, I. Panet, et al., Earth Planet. Sci. Lett. 228, 281 (2004). doi 10.1016/j.epsl.2004.09.035ADSCrossRefGoogle Scholar
  5. 5.
    O. de Viron, I. Panet, V. Mikhailov, M. Van Camp, et al., Geophys. J. Int. 174, 14 (2008). doi 10.1111/J.1365-246X.2008.03807.XADSCrossRefGoogle Scholar
  6. 6.
    S.-C. Han, C. K. Shum, M. Bevis, C. Ji, and C.-Y. Kuo, Science 313, 658 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    I. Panet, V. Mikhailov, M. Diament, F. Pollitz, et al., Geophys. J. Int. 171, 177 (2007). doi 10.1111/J.1365-246X.2007.03525.XADSCrossRefGoogle Scholar
  8. 8.
    I. Panet, F. Pollitz, V. Mikhailov, M. Diament, et al., Geochem., Geophys., Geosyst. 11, Q06008 (2010). doi 10.1029/2009GC002905ADSCrossRefGoogle Scholar
  9. 9.
    K. Matsuo and K. Heki, Geophys. Res. Lett. 38, L00G12 (2011). doi 10.1029/2011GL049018CrossRefGoogle Scholar
  10. 10.
    V. O. Mikhailov, I. Panet, M. Hayn, E. P. Timoshkina, S. Bonvalot, V. Lyakhovsky, M. Diament, and O. de Viron, Izv., Phys. Solid Earth 50, 177 (2014). doi 10.1134/S1069351314020062CrossRefGoogle Scholar
  11. 11.
    V. O. Mikhailov, M. Diament, A. A. Lyubushin, E. P. Timoshkina, and S. A. Khairetdinov, Izv., Phys. Solid Earth 52, 692 (2016). doi 10.1134/S1069351316040054CrossRefGoogle Scholar
  12. 12.
    M. Hashimoto, N. Choosakul, M. Hashizume, S. Takemoto, et al., Earth, Planets Space 58, 127 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    F. Pollitz, P. Banerje, and R. Bürgmann, Geophys. J. Int. 167, 397 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    V. Mikhailov, V. Lyakhovsky, I. Panet, Y. van Dinther, et al., Geophys. J. Int. 194, 640 (2013). doi 10.1093/gji/ggt145ADSCrossRefGoogle Scholar
  15. 15.
    T. Lay, H. Kanamori, C. Amman, A. R. Hutko, et al., J. Geophys. Res. 114, B11308 (2009). doi 10.1029/2008JB006280ADSCrossRefGoogle Scholar
  16. 16.
    G. M. Steblov, N. F. Vasilenko, A. S. Prytkov, D. I. Frolov, and T. A. Grekova, Izv., Phys. Solid Earth 46, 440 (2010).CrossRefGoogle Scholar
  17. 17.
    M. Kogan, N. Vasilenko, D. Frolov, J. Freymueller, et al., Geophys. Res. Lett. 38, L06304 (2011). doi 10.1029/2011GL046855ADSCrossRefGoogle Scholar
  18. 18.
    V. O. Mikhailov, E. P. Timoshkina, and M. Diament, Dokl. Earth Sci. 471, 1188 (2016). doi 10.1134/S1028334X16110179ADSCrossRefGoogle Scholar
  19. 19.
    G. M. Steblov, M. G. Kogan, B. V. Levin, N. F. Vasilenko, et al., Geophys. Res. Lett. 35, L22306 (2008). doi 10.1029/2008GL035572ADSCrossRefGoogle Scholar
  20. 20.
    F. F. Pollitz, J. Geophys. Res. 102, 17 (1997).CrossRefGoogle Scholar
  21. 21.
    M. G. Kogan, N. F. Vasilenko, D. I. Frolov, J. T. Freymueller, et al., J. Geophys. Res. 118, 3691 (2013). doi 10.1002/jgrb.50245ADSCrossRefGoogle Scholar
  22. 22.
    S.-C. Han, J. Sauber, and F. Pollitz, Geophys. Res. Lett. 43, 3169 (2016). doi 10.1002/2016GL068167ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of Physics, Moscow State UniversityMoscowRussia
  2. 2.Schmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia
  3. 3.Institut de Physique du Globe de Paris, Université Paris DiderotParisFrance

Personalised recommendations