Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 5, pp 558–563 | Cite as

Numerical and Laboratory Experiments on the Destruction of Construction Materials under the Impact of an Electromagnetic Field

  • V. B. LapshinEmail author
  • V. B. SmirnovEmail author
  • A. A. Skubachevsky
  • A. V. Ponomarev
  • A. V. Patonin
  • A. A. Chromov
  • M. G. PotaninaEmail author
ENGINEERING PHYSICS
  • 16 Downloads

Abstract

This paper presents the results of numerical experiments on the impact of electromagnetic radiation on strength characteristics of natural and artificial materials and the data of laboratory experiments on the destruction of Berea sandstones and concretes under the impact of an electric current on loaded samples with a constant velocity of deformation.

Keywords:

acoustic emission destruction of rock samples laboratory modeling numerical experiments. 

Notes

ACKNOWLEDGMENTS

The laboratory experiments were supported by the Russian Science Foundation, project no. 16-47-02003.

REFERENCES

  1. 1.
    E. M. Morozov and G. P. Nikishkov, Finite-Element Method in Fracture Mechanics (LKI, Moscow, 2008).zbMATHGoogle Scholar
  2. 2.
    N. F. Morozov and N. V. Ponikarov, Issues in Mechanics of Continua and Structural Components (Inst. Avtom. Protsessov Upr., Vladivostok, 1998).Google Scholar
  3. 3.
    S. A. Goncharov, P. P. Anan’ev, and V. Yu. Ivanov, Softening of Rocks in Pulsed Electromagnetic Fields (Mosk. Gos. Gorn. Univ., Moscow, 2006).Google Scholar
  4. 4.
    V. B. Lapshin, A. V. Patonin, A. V. Ponomarev, M. G. Potanina, V. B. Smirnov, and S. M. Stroganova, Dokl. Earth Sci. 469, 705 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    B. V. Deryagin, I. I. Abrikosova, and E. M. Lifshitz, Phys.-Usp. 58, 906 (2015).CrossRefGoogle Scholar
  6. 6.
    B. V. Derjaguin, N. V. Churaev, and V. M. Muller, Surface Forces (Nauka, Moscow, 1985; Springer, 1987).Google Scholar
  7. 7.
    A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, London, 2005), p. 51.zbMATHGoogle Scholar
  8. 8.
    K. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966).ADSCrossRefGoogle Scholar
  9. 9.
    R. C. Rumpf, C. R. Garcia, E. A. Berry, and J. H. Barton, PIER B 61, 55 (2014).CrossRefGoogle Scholar
  10. 10.
    R. Holland and J. Williams, IEEE Trans. Nucl. Sci. 30, 4583 (1983). doi 10.1109/TNS.1983.4333175ADSCrossRefGoogle Scholar
  11. 11.
    J.-P. Berenger, J. Comput. Phys. 114, 185 (1994).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    G. Mur, IEEE Trans. Electromagn. Compat. 23, 377 (1981).CrossRefGoogle Scholar
  13. 13.
    T. G. Jurgens, A. Taflove, K. R. Umashankar, and T. G. Moore, IEEE Trans. Antennas Propag. 40, 357 (1992).ADSCrossRefGoogle Scholar
  14. 14.
    J. H. Schön, Physical Properties of Rocks: A Workbook (Elsevier, 2011).Google Scholar
  15. 15.
    C. Jones, G. Keaney, P. G. Meredith, and S. A. F. Murrell, Phys. Chem. Earth 22, 1317 (1997).Google Scholar
  16. 16.
    V. L. Shkuratnik, E. A. Novikov, A. C. Voznesenskii, and V. A. Vinnikov, Thermally Stimulated Acoustic Emission in Geomaterials (Gornaya Kniga, Moscow, 2015).Google Scholar
  17. 17.
    M. G. Menzhulin and Kh. F. Makhmudov, Tech. Phys. 62, 1056 (2017).CrossRefGoogle Scholar
  18. 18.
    S. N. Zhurkov, in The Physics of Strength and Plasticity (Akad. Nauk SSSR, Moscow, 1980), p. 5.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Fedorov Institute of Applied GeophysicsMoscowRussia
  3. 3.Schmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia
  4. 4.Borok Geophysical Observatory, Branch of the Schmidt Institute of Physics of the Earth, Russian Academy of SciencesBorokRussia

Personalised recommendations