Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 5, pp 542–550 | Cite as

Modification of a Mathematical Model of Non-Isothermal Flow in an Oil-Kerogen-Containing Reservoir Taking Thermal Degradation of Kerogen into Account

  • A. V. KayukovaEmail author
  • A. V. IsaevaEmail author
PHYSICS OF EARTH, ATMOSPHERE, AND HYDROSPHERE
  • 9 Downloads

Abstract

This paper deals with modification of a mathematical model for the multicomponent non-isothermal flow of oil and gas considering the processes of thermal degradation of kerogen upon heating of oil-kerogen-containing reservoirs. A system of differential equations that describe thermal degradation is formulated based on the data on testing a thermal-gas method at the deposit of the Bazhenov formation, as well as using the data from laboratory pyrolytic studies. The one-dimensional initial-boundary problem that is obtained is solved using numerical methods. The numerical experiments were carried out at different values of parameters for two models: the classical model of multi-component three-phase flow and the model supplemented by the equations that describe thermal degradation. The computational results obtained based on the two different models are compared; the advantages of the model proposed in this paper are shown.

Keywords:

thermal degradation kerogen Bazhenov formation multi-component non-isothermal flow. 

Notes

ACKNOWLEDGMENTS

This paper was supported by the Russian Foundation for Basic Research (grant no. 15-07-99584).

REFERENCES

  1. 1.
    G. Vygon, A. Rubtsov, S. Klubkov, et al., Unconventional Oil: Will Bazhen Become the New Bakken? (Skolkovo, 2013).Google Scholar
  2. 2.
    V. Kuuskraa, S. Stevens, and K. Moodhe, Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States (U.S. Department of Energy, Washington, 2013).Google Scholar
  3. 3.
    F. Feng and I. Y. Akkutlu, in Proc. SPE Asia Pacific Unconventional Resources Conf. and Exhibition, Brisbane, Australia, 2011, p. SPE-177005-MS.Google Scholar
  4. 4.
    K. Gerke, M. V. Karsanina, T. O. Sizonenko, et al., in Proc. SPE Russian Petroleum Technology Conf., Moscow, Russia, 2017, p. SPE-187874-MS.Google Scholar
  5. 5.
    M. Stukan and W. Abdaliah, in Proc. SPE Middle East Oil & Gas Show and Conf., Manama, Bahrain, 2015, p. SPE-172589-MS.Google Scholar
  6. 6.
    N. Okamoto, Y. Liang, S. Murata, et al., in Proc. SPE Asia Pacific Unconventional Resources Conf. and Exhibition, Brisbane, Australia, 2015, p. SPE-176989-MS.Google Scholar
  7. 7.
    R. Kou, S. F. K. Alafnan, and I. Y. Akkutlu, in Proc. 78th EAGE Conf. and Exhibition, Vienna, Austria, 2016, p. SPE-180112-MS.Google Scholar
  8. 8.
    O. A. Beg, H. S. Takhar, R. Bhargava, et al., Phys. Scr. 77, 065402 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    Z. Zeng and R. Grigg, Transp. Porous Media 63, 57 (2006).CrossRefGoogle Scholar
  10. 10.
    A. Suhag, R. Ranjith, F. Aminzadeh, et al., in Proc. SPE Annual Technical Conf. and Exhibition, San Antonio, Texas, United States, 2017, p. SPE-187112-MS.Google Scholar
  11. 11.
    I. Y. Akkutlu and Y. C. Yortsos, SPE J. 10 (4), SPE-75128-PA (2005).Google Scholar
  12. 12.
    Y. Hu, D. Devegowda, and R. F. Sigal, in Proc. SPE Annual Technical Conf. and Exhibition, Amsterdam, Netherlands, 2014, p. SPE-170915-MS.Google Scholar
  13. 13.
    K. Aziz and A. Settari, Petroleum Reservoir Simulation (Applied Science, 1979).Google Scholar
  14. 14.
    R. D. Kanevskaya, Mathematical Simulation of Hydrodynamic Processes of Hydrocarbon Reserve Development (IKI, Izhevsk, 2002).Google Scholar
  15. 15.
    K. S. Basniev, I. I. Kochina, and V. M. Maksimov, Subsurface Fluid Mechanics (Nedra, Moscow, 1993).Google Scholar
  16. 16.
    https://webbook.nist.gov/chemistry/fluid/.Google Scholar
  17. 17.
    A. T. Corey, Prod. Mon. 19, 38 (1954).Google Scholar
  18. 18.
    O. K. Bazhenova, K. K. Burlin, B. A. Sokolov, and V. E. Khain, Geology and Geochemistry of Oil and Gas (Moscow, 2004).Google Scholar
  19. 19.
    E. V. Kozlova, N. P. Fadeeva, G. A. Kalmykov, N. S. Balushkina, N. V. Pronina, E. N. Poludetkina, O. V. Kostenko, A. Yu. Yurchenko, R. S. Borisov, A. Yu. Bychkov, A. G. Kalmykov, R. A. Khamidullin, and E. D. Strel’tsov, Moscow Univ. Geol. Bull. 70, 409 (2015).CrossRefGoogle Scholar
  20. 20.
    K. A. Shchekoldin, Candidate’s Dissertation in Engineering (Gubkin Russian State Univ. of Oil and Gas, Moscow, 2016).Google Scholar
  21. 21.
    N. S. Balushkina, G. A. Kalmykov, T. A. Kiryukhina, et al., Geol. Nefti Gaza, No. 3, 48 (2013).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of Physics, Moscow State UniversityMoscowRussia

Personalised recommendations