Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 5, pp 475–481 | Cite as

Analysis of the Influence of Longitudinal Fields on the Scattering Properties of Nonspherical Plasmonic Nanoparticle Clusters via the Discrete-Sources Method

  • Yu. A. EreminEmail author
  • A. G. SveshnikovEmail author
OPTICS AND SPECTROSCOPY. LASER PHYSICS
  • 13 Downloads

Abstract

We consider the problem of diffraction of a plane electromagnetic wave field at a linear cluster consisting of two plasmonic nanoparticles while accounting for the nonlocal effect. The research is based on the mathematical model of the generalized non-local optical response. On the basis of the modification of the discrete sources method, a comparative numerical analysis of the scattering characteristics in the frequency domain is carried out depending on the geometry of the particles and the distance between them. It has been established that taking longitudinal fields into account has a significant influence on the extinction cross section and even more on the scattering cross section.

Keywords:

light scattering plasmonic nanoparticles longitudinal fields generalized non-local optical response model  discrete-sources method. 

Notes

REFERENCES

  1. 1.
    V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009).Google Scholar
  2. 2.
    S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).CrossRefGoogle Scholar
  3. 3.
    M. Pelton and G. W. Bryant, Introduction to Metal-Nanoparticle Plasmonics (Wiley, 2013).Google Scholar
  4. 4.
    G. Toscano, S. Raza, A.-P. Jauho, N. A. Mortensen, et al., Opt. Express 20, 4176 (2012). doi 10.1364/OE.20.004176ADSCrossRefGoogle Scholar
  5. 5.
    S. Kessentini, D. Barchiesi, C. D’Andrea, A. Toma, et al., Phys. Chem. C 118, 3209 (2014). doi 10.1021/jp409844yCrossRefGoogle Scholar
  6. 6.
    N. V. Grishina, Yu. A. Eremin, and A. G. Sveshnikov, Moscow Univ. Phys. Bull. 66, 552 (2011). doi 10.3103/S0027134911060075ADSCrossRefGoogle Scholar
  7. 7.
    Y. Eremin, E. Eremina, N. Grishina, and T. Wriedt, J. Comput. Theor. Nanosci. 9, 469 (2012). doi 10.1166/jctn.2012.2048CrossRefGoogle Scholar
  8. 8.
    C. David and F. J. Garcia de Abajo, J. Phys. Chem. C 115, 19470 (2011). doi doi 10.1021/jp204261uCrossRefGoogle Scholar
  9. 9.
    S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, Phys. Rev. B 84, 121412(R) (2011). doi 10.1103/PhysRevB.84.121412Google Scholar
  10. 10.
    J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).zbMATHGoogle Scholar
  11. 11.
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1978).Google Scholar
  12. 12.
    N. A. Mortensen, Photonics Nanostruct. – Fundam. Appl. 11, 303 (2013). doi 10.1016/j.photonics.2013.06.002Google Scholar
  13. 13.
    S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, J. Phys.: Condens. Matter 27, 183204 (2015). doi 10.1088/0953-8984/27/18/183204ADSGoogle Scholar
  14. 14.
    Yu. A. Eremin and A. G. Sveshnikov, Moscow Univ. Phys. Bull. 71, 492 (2016). doi 10.3103/S0027134916050076ADSCrossRefGoogle Scholar
  15. 15.
    N. A. Mortensen, S. Raza, M. Wubs, T. Sondergaard, et al., Nat. Commun. 5, 3809 (2014). doi 10.1038/ncomms4809CrossRefGoogle Scholar
  16. 16.
    A. Moradi, Phys. Plasmas 22, 032112 (2015). doi 10.1063/1.4916059ADSCrossRefGoogle Scholar
  17. 17.
    R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, et al., Faraday Discuss. 178, 151 (2015). doi 10.1039/C4FD00196FADSCrossRefGoogle Scholar
  18. 18.
    N. Schmitt, C. Scheid, S. Lanteri, A. Moreau, et al., J. Comput. Phys. 316, 396 (2016). doi 10.1016/j.jcp.2016.04.020ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    M. Wubs and N. Asger Mortensen, in Quantum Plasmonics, Ed. by S. I. Bozhevolnyi, L. Martin-Moreno, and F. Garcia-Vidal (Springer, 2017), p. 297. doi 10.1007/978-3-319-45820-5_12Google Scholar
  20. 20.
    D. McArthur, B. Hourahine, and F. Papoff, Opt. Commun. 382, 258 (2017). doi 10.1016/j.optcom.2016.07.032ADSCrossRefGoogle Scholar
  21. 21.
    Yu. A. Eremin and A. G. Sveshnikov, Comput. Math. Math. Phys. 47, 262 (2007). doi 10.1134/S0965542507020108MathSciNetCrossRefGoogle Scholar
  22. 22.
    M. Kahnert, J. Quant. Spectrosc. Radiat. Transfer 178, 22 (2016). doi doi 10.1016/j.jqsrt.2015.10.029ADSCrossRefGoogle Scholar
  23. 23.
    B. Gallinet, J. Butet, and O. J. F. Martin, Laser Photonics Rev. 9, 577 (2015). doi 10.1002/lpor.201500122ADSCrossRefGoogle Scholar
  24. 24.
    N. S. Bakhvalov, Numerical Methods (Analysis, Algebra, and Ordinary Differential Equations) (Nauka, Moscow, 1975).Google Scholar
  25. 25.
    V. A. Morozov, Regular Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1987).Google Scholar
  26. 26.
    R. G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, 1966).Google Scholar
  27. 27.
    www.rcfractiveindex.infoGoogle Scholar
  28. 28.
    S. Raza, M. Wubs, S. I. Bozhevolnyi, and N. A. Mortensen, Opt. Lett. 40, 839 (2015). doi 10.1364/OL.40.000839ADSCrossRefGoogle Scholar
  29. 29.
    A. Cacciola, M. A. Iati, R. Saija, F. Borghese, et al., J. Quant. Spectrosc. Radiat. Transfer 195, 97 (2017). doi 10.1016/j.jqsrt.2016.12.010ADSCrossRefGoogle Scholar
  30. 30.
    C. Tserkezis, W. Yan, W. Hsieh, G. Sun, et al., Int. J.  Mod. Phys. B 31, 1740005 (2017). doi 10.1142/S0217979217400057ADSCrossRefGoogle Scholar
  31. 31.
    C. Tserkezis, N. A. Mortensen, and M. Wubs, Phys. Rev. B 96, 085413 (2017). doi 10.1103/PhysRevB.96.085413ADSCrossRefGoogle Scholar
  32. 32.
    E.-M. Roller, L. V. Besteiro, C. Pupp, L. K. Khorashad, et al., Nat. Phys. 13, 761 (2017). doi 10.l038/nphys4120Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of Computational Mathematics and Cybernetics, Moscow State UniversityMoscowRussia
  2. 2.Department of Physics, Moscow State UniversityMoscowRussia

Personalised recommendations