Moscow University Physics Bulletin

, Volume 73, Issue 5, pp 520–525 | Cite as

Analysis of Secondary Photons Emergent from Combined Material Slab as a Function of Slab Thickness

  • Mohamed BencheikhEmail author
  • Abdelmajid Maghnouj
  • Jaouad Tajmouati
  • Abdessamad Didi


Material science is very important for developing the linear accelerator. Determination and understanding of material behavior face to X-rays is a basic study for photon beam modifiers improvements. In this study, the 6 MV photon beams produced by Varian Clinac 2100 was modelled by Monte Carlo simulation using BEAMnrc code and thereafter the flattening filter was replaced by a slab of aluminum and copper separately and by slab of both materials combined together with different thickness of 2.5, 5, 7.5, and 10 mm.

The purpose of this study is to investigate the scattered photons with thickness of combined material slab as a function of off-axis distance. The scattered photons increased with thickness of copper alone slab, combined aluminum-copper slab and copper-aluminum slab, but for aluminum alone slab they decreased with slab thickness. The stacking order of these two materials affects the characterization of scattered photons emergent from material slab with thickness. The combination of materials and the manner that the stacking was done affects the scattered photons production. The material combination could improve the radiotherapy efficiency in beam modifier development using more than two materials.


copper slab aluminum slab Monte Carlo simulation scattered photons BEAMnrc code BEAMDP code. 



The authors would like to thank Varian Medical Systems for providing us with the Varian Clinac 2100 geometry data and giving us this opportunity to study the Varian linear accelerator technology and to participate in its future development.


  1. 1.
    M. Bencheikh, A. Maghnouj, and J. Tajmouati, Phys. Part. Nucl. Lett. 14, 953 (2017).CrossRefGoogle Scholar
  2. 2.
    A. O. Ezzati, Y. Xiao, M. Sohrabpour, and M. T. Studenski, Med. Biol. Eng. Comput. 53, 67 (2015).CrossRefGoogle Scholar
  3. 3.
    M. Bencheikh, A. Maghnouj, and J. Tajmouati, Moscow Univ. Phys. Bull. 72, 263 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    A. Didi, A. Dadouch, M. Bencheikh, and O. Jai, Moscow Univ. Phys. Bull. 72, 460 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    M. Bencheikh, A. Maghnouj, J. Tajmouati, and A. Didi, Moscow Univ. Phys. Bull. 72, 640 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    D. W. O. Rogers, B. Walters, and I. Kawrakow, BEAMnrc Users Manual (Ottawa, 2013), pp. 12–254.Google Scholar
  7. 7.
    D. W. O. Rogers, I. Kawrakow, J. P. Seuntjens, B. Walters, and H. E. Mainegra, NRC User Codes for EGSnrc (Ottawa, 2013), pp. 6–83.Google Scholar
  8. 8.
    M. Bencheikh, A. Maghnouj, J. Tajmouati, A. Didi, and A. O. Ezzati, Phys. Part. Nucl. Lett. 14, 780 (2017).CrossRefGoogle Scholar
  9. 9.
    Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer (International Atomic Energy Agency, Vienna, 2004).Google Scholar
  10. 10.
    Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems (International Atomic Energy Agency, Vienna, 2007).Google Scholar
  11. 11.
    C. M. Ma and D. W. O. Rogers, BEAMDP Users Manual (National Research Council of Canada, Ottawa, 2013), pp. 3–24.Google Scholar
  12. 12.
    M. Aljamal and A. Zakaria, Aust. J. Basic Appl. Sci. 7, 340 (2013).Google Scholar
  13. 13.
    Absorbed Dose Determination in External Beam Radiotherapy (International Atomic Energy Agency, Vienna, 2000), pp. 110–133.Google Scholar
  14. 14.
    P. Lonski, M. L. Taylor, R. D. Franich, P. Harty, and T. Kron, Radiat. Prot. Dosim. 152, 304 (2012).CrossRefGoogle Scholar
  15. 15.
    Contrôles de qualité en radiothérapie conformationnelle avec modulation d’intensité (Société Française de Physique Médicale, 2010), pp. 42–44.Google Scholar
  16. 16.
    A. Brahme and P. Andreo, Acta Radiol.: Oncol. 25, 213 (1986).Google Scholar
  17. 17.
    J. Ojala, PhD Thesis (Tampere University of Technology, Tampere, 2014).Google Scholar
  18. 18.
    M. Bencheikh, A. Maghnouj, J. Tajmouati, A. Lamrabet, and Y. Benkhouy, Moscow Univ. Phys. Bull. 72, 653 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    M. Bencheikh, A. Maghnouj, and J. Tajmouati, Phys. Part. Nucl. Lett. 14, 963 (2017). CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Mohamed Bencheikh
    • 1
    Email author
  • Abdelmajid Maghnouj
    • 1
  • Jaouad Tajmouati
    • 1
  • Abdessamad Didi
    • 1
  1. 1.LISTA Laboratory, Department of Physics, Faculty of Sciences Dhar El-Mahraz, University of Sidi Mohamed Ben AbdellahFezMorocco

Personalised recommendations