Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 5, pp 447–456 | Cite as

The “Paradox” of Karl Popper and Its Connection with the Heisenberg Uncertainty Principle and Quantum Ghost Images

  • A. V. BelinskyEmail author
OPTICS AND SPECTROSCOPY. LASER PHYSICS (REVIEW)
  • 24 Downloads

Abstract

An experiment to verify the adequacy of the Heisenberg uncertainty principle, as proposed by Karl Popper and implemented in practice, is considered. As in the Einstein–Podolsky–Rosen paradox, the quantum properties of an entangled pair of elementary particles are used. In this case, a ghost image of a narrow slit is actually formed. The results of the experiment, at first glance, support a violation of the uncertainty principle. However, analysis of the spatial resolution of the slit ghost image shows that this is not correct. A more correct description of diffraction in the case of spatially limited light beams, gives no violation of the uncertainty principle. The results can be also used to estimate the extreme quality of diffraction limited ghost images.

Keywords:

Heisenberg’s principle of uncertainty entangled states Copenhagen interpretation optical transfer function spatial resolution. 

Notes

ACKNOWLEDGMENTS

I am grateful to D.N. Puhov for his help. This work was carried out with the support of the Russian Foundation for Basic Research (grant no. 18-01-00598).

REFERENCES

  1. 1.
    W. Heisenberg, Z. Phys. 43, 172 (1927).ADSCrossRefGoogle Scholar
  2. 2.
    A. V. Belinsky and V. B. Lapshin, Uch. Zap. Fiz. Fak. Mosk. Gos. Univ., No. 4, 164001 (2016).Google Scholar
  3. 3.
    A. V. Belinsky and V. B. Lapshin, Phys.-Usp. 60, 325 (2017).CrossRefGoogle Scholar
  4. 4.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).ADSCrossRefGoogle Scholar
  5. 5.
    D. N. Klyshko, JETP Lett. 6, 23 (1967).ADSGoogle Scholar
  6. 6.
    S. L. Akhmanov, V. V. Fadeev, R. V. Khokhlov, and O. N. Chunaev, JETP Lett. 6, 85 (1967).ADSGoogle Scholar
  7. 7.
    D. N. Klyshko, A. N. Penin, and B. F. Polkovnikov, JETP Lett. 11, 5 (1970).ADSGoogle Scholar
  8. 8.
    A. S. Chirkin, M. Yu. Saigin, and I. V. Shutov, J. Russ. Laser Res. 29, 336 (2008).CrossRefGoogle Scholar
  9. 9.
    A. V. Belinskii and D. N. Klyshko, J. Exp. Theor. Phys. 78, 259 (1994).ADSGoogle Scholar
  10. 10.
    D. N. Klyshko, J. Exp. Theor. Phys. 67, 1131 (1988).Google Scholar
  11. 11.
    Quantum Imaging, Ed. by M. I. Kolobov (Springer, New York, 2007).Google Scholar
  12. 12.
    K. Popper, Naturwissenschaften 22, 807 (1934).ADSCrossRefGoogle Scholar
  13. 13.
    K. Popper, Quantum Theory and the Schism in Physics, Ed. by W.W. Bartley III (Rowan and Littlefield, 1982).Google Scholar
  14. 14.
    Y. H. Kim and Y. Shih, Found. Phys. 29, 12 (1999).CrossRefGoogle Scholar
  15. 15.
    A. Sudbery, Philos. Sci. 52, 170 (1985).CrossRefGoogle Scholar
  16. 16.
    T. Qureshi, Am. J. Phys. 73, 511 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    A. J. Short, Found. Phys. Lett. 14, 275 (2001).CrossRefGoogle Scholar
  18. 18.
    T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Ru-bin, A. V. Sergienko, and Y. H. Shih, Phys. Rev. A 53, 2804 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    A. V. Belinsky, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron., No. 3, 34 (1999).Google Scholar
  20. 20.
    E. V. Kovlakov, I. B. Bobrov, S. S. Straupe, and S. P. Kulik, Phys. Rev. Lett. 118, 030503 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    S. B. Gurevich, V. V. Konstantinov, V. K. Sokolov, and D. F. Chernykh, Holographic Techniques of Data Transmission and Processing (Sov. Radio, Moscow, 1978).Google Scholar
  22. 22.
    S. A. Rodionov, Basic Optics (GITMO, St. Petersburg, 2000).Google Scholar
  23. 23.
    E. Kennard, Z. Phys. 44, 326 (1927).ADSCrossRefGoogle Scholar
  24. 24.
    H. Weyl, Gruppentheorie und Quantenmechanik (Hirzel, Leipzig, 1928).zbMATHGoogle Scholar
  25. 25.
    E. Schrödinger, Phys.-Math. Kl. 14, 296 (1930).Google Scholar
  26. 26.
    H. P. Robertson, Phys. Rev. 34, 163 (1929).ADSCrossRefGoogle Scholar
  27. 27.
    L. A. Rozema, A. Darabi, D. H. Mahler, et al., Phys. Rev. Lett. 109, 100404 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    M. Ozawa, Phys. Rev. A 67, 042105 (2003).ADSCrossRefGoogle Scholar
  29. 29.
    A. P. Lund and H. M. Wiseman, New J. Phys. 12, 093011 (2010).ADSCrossRefGoogle Scholar
  30. 30.
    R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, London, 1963), Vol. 1.zbMATHGoogle Scholar
  31. 31.
    A. V. Belinsky and D. N. Klyshko, Laser Phys. 6, 1082 (1996).Google Scholar
  32. 32.
    A. V. Belinskii, Phys.-Usp. 46, 877 (2003).CrossRefGoogle Scholar
  33. 33.
    A. V. Belinsky, Quantum Measurements (BINOM, Moscow, 2015).Google Scholar
  34. 34.
    A. Peres and D. R. Termo, Rev. Mod. Phys. 76, 93 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of Physics, Moscow State UniversityMoscowRussia

Personalised recommendations