Moscow University Physics Bulletin

, Volume 73, Issue 2, pp 141–153 | Cite as

Space Navigation by X-Ray Pulsars

  • M. V. SazhinEmail author
  • V. E. Zharov
  • V. K. Milyukov
  • M. S. Pshirkov
  • V. N. Sementsov
  • O. S. Sazhina
Astronomy, Astrophysics, and Cosmology (Review)


This review considers the problem of autonomously determining the position of a spacecraft in space based on the analysis of pulses emitted by X-ray pulsars. The characteristics of the prospective equipment and lists of pulsar candidates for reference sources are given. The navigation algorithm and resulting accuracy characteristics are substantiated.


pulsars spatial position integral pulse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. N. Lysenko and N. M. Ivanov, Ballistics and Navigation of Spacecraft (Drofa, Moscow, 2004).Google Scholar
  2. 2.
    D. A. Vallado, Fundamentals of Astrodynamics and Applications (Springer, New York, 2007).zbMATHGoogle Scholar
  3. 3.
    V. E. Zharov, Spherical Astronomy (Vek-2, Fryazino, 2006).Google Scholar
  4. 4.
    J. Kovalevsky, Modern Astrometry, 2nd ed. (Berlin, New York: Springer, 2002)CrossRefGoogle Scholar
  5. 5.
    C. J. Weeks and M. J. Bowers, J. Guid., Control, Dyn. 18, 1287 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    D. Folta, C. Gramling, A. Long, et al., in Proc. AAS/AIAA Astrodynamics Conf., Girdwood, Alaska, 1999, p. 2161.Google Scholar
  7. 7.
    V. M. Kaspi, in Proc. IAU Symp. 166, Hague, Netherlands, 1994, p.163.Google Scholar
  8. 8.
    S. I. Sheikh, D. J. Pines, P. S. Ray, et al., J. Guid., Control, Dyn. 29, 49 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    A. A. Emadzadeh and J. L. Speyer, IEEE Trans. Signal Process. 58, 4484 (2010).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    W. Becker, M. G. Bernhardt, and A. Jessner, Acta Futura 7, 11 (2013).Google Scholar
  11. 11.
    P. S. Ray, K. S. Wood, M. T. Wolff, et al., Bull. Am. Astron. Soc. 34, 1298 (2002).ADSGoogle Scholar
  12. 12.
    A. Kuzmin, B. Y. Losovsky, C. A. Jordan, and F. G. Smith, Astron. Astrophys. 483, 13 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    J. H. Taylor, Philos. Trans. R. Soc. London A 341, 117 (1992).ADSCrossRefGoogle Scholar
  14. 14.
    L. Kuiper and W. Hermsen, arXiv:astro-ph/0312204.Google Scholar
  15. 15.
    V. E. Zavlin, Astrophys. Space Sci. 308, 297 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    E. S. Seo, J. F. Ormes, R. E. Streitmatter, et al., Astrophys. J. 378, 763 (1991).ADSCrossRefGoogle Scholar
  17. 17.
    D. E. Gruber, J. L. Matteson, I. E. Peterson, and G. V. Jung, Astrophys. J. 520, 124 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    Th. Damour, M. Soffel, and Ch. Xu, Phys. Rev. D 43, 3273 (1991).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    G. Petit, in Proc. IAG Symposium 120, Munich, Germany, 1998, p.3.Google Scholar
  20. 20.
    M. Soffel, S. Klioner, G. Petit, and P. Wolf, in Proc. Int. Conf “Motion of Celestial Bodies, Astrometry and Astronomical Reference Frames,” Dresden, Germany, 1999, p.34.Google Scholar
  21. 21.
    S. G. Turyshev, M. V. Sazhin, and V. T. Toth, Phys. Rev. D 89, 105029 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    S. G. Turyshev, V. T. Toth, and M. V. Sazhin, Phys. Rev. D 87, 024020 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    S. Kopeikin, M. Efroimsky, and G. Kaplan, Relativistic Celestial Mechanics of the Solar System (Wiley, New York, 2011).CrossRefzbMATHGoogle Scholar
  24. 24.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).zbMATHGoogle Scholar
  25. 25.
    S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).Google Scholar
  26. 26.
    M. V. Sazhin, Astron. Zh. 55, 65 (1978).ADSMathSciNetGoogle Scholar
  27. 27.
    M. V. Sazhin, Astron. Tsirk., No. 1002 (1978).Google Scholar
  28. 28.
    S. Detweiler, Astrophys. J. 234, 1100 (1979).ADSCrossRefGoogle Scholar
  29. 29.
    J. H. Taylor, in Proc. 37th Annual Symp. on Frequency Control, Philadelphia, Pennsylvania, 1983, p.6.Google Scholar
  30. 30.
    V. G. Il’in, Y. P. Ilyasov, A. D. Kuz’min, et al., Sov. Phys. Dokl. 29, 252 (1984).ADSGoogle Scholar
  31. 31.
    J. H. Taylor, Jr., IEEE Proc. 79, 1054 (1991).ADSCrossRefGoogle Scholar
  32. 32.
    D. N. Matsakis, J. H. Taylor, and T. M. Eubanks, Astron. Astrophys. 326, 924 (1997).ADSGoogle Scholar
  33. 33.
    W. Kundt, in Proc. IAU Colloq. 177, Bonn, Germany, 1999, p.103.Google Scholar
  34. 34.
    Y. Hanado, M. Imae, M. Sekido, and M. Hosokawa, Commun. Res. Lab. Rev. 45, 127 (1999).Google Scholar
  35. 35.
    M. V. Sazhin, Meas. Tech. 32, 42 (1989).CrossRefGoogle Scholar
  36. 36.
    Yu. P. Ilyasov, S. M. Kopeikin, and A. E. Rodin, Astron. Lett. 24, 228 (1998).ADSGoogle Scholar
  37. 37.
    O. V. Doroshenko, Y. P. Ilyasov, S. M. Kopeikin, and M. V. Sazhin, in Proc. IAU Symp. 141, Leningrad, USSR, 1989, p.213.Google Scholar
  38. 38.
    M. G. Bernhardt, T. Prinz, W. Becker, and U. Walter, in Proc. Workshop “High Time Resolution Astrophysics IV: The Era of Extremely Large Telescopes,” Agios Nikolaos, Crete, Greece, 2010.
  39. 39.
    M. G. Bernhardt, W. Becker, T. Prinz, et al., arXiv:1111.1138 [astro-ph.HE].Google Scholar
  40. 40.
    M. G. Revnivtsev, O. E. Gadzhily, A. A. Lutovinov, S. V. Molkov, V. A. Arefiev, M. N. Pavlinsky, and A. G. Tuchin, Astron. Lett. 41, 450 (2015).ADSCrossRefGoogle Scholar
  41. 41.
    I. Yu. Vlasov, V. E. Zharov, and M. V. Sazhin, Astron. Rep. 56, 984 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • M. V. Sazhin
    • 2
    Email author
  • V. E. Zharov
    • 1
  • V. K. Milyukov
    • 2
  • M. S. Pshirkov
    • 2
  • V. N. Sementsov
    • 2
  • O. S. Sazhina
    • 2
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Sternberg State Institute of AstronomyMoscow State UniversityMoscowRussia

Personalised recommendations