Moscow University Physics Bulletin

, Volume 73, Issue 2, pp 162–167 | Cite as

Analytical Solution of the Problem of the Electrovortex Flow in the Hemisphere with Finite Size Electrodes in the Stokes Approximation

  • E. A. MikhailovEmail author
  • I. O. Teplyakov
Theoretical and Mathematical Physics


An analytical solution was obtained for a stationary axisymmetric motion equation for a flow caused by an inhomogeneous electric current propagating through an electrically conducting liquid. The problem was solved in the variables for vorticity and velocity vector potential in hemispherical geometry with the finite size electrodes. Stokes and electrodynamic approximations were used.


velocity conductive medium electric current magnetic field vector potential vorticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Boyarevich, Ya. Zh. Freiberg, E. I. Shilova, et al., Electrical Eddy Flows, Ed. by E.V. Shcherbinin (Zinatne, Riga, 1985).Google Scholar
  2. 2.
    C. Sozou and W. M. Pickering, J. Fluid Mech. 73, 641 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    C. Sozou and W. M. Pickering, Proc. R. Soc. London A 362, 509 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    V. G. Zhilin, Yu. P. Ivochkin, V. S. Igumnov, and A. A. Oksman, Teplofiz. Vys. Temp. 33, 5 (1995).Google Scholar
  5. 5.
    V. G. Zhilin, Yu. P. Ivochkin, and I. O. Teplyakov, High Temp. 49, 927 (2011).CrossRefGoogle Scholar
  6. 6.
    Yu. P. Ivochkin, I. O. Teplyakov, and D. A. Vinogradov, Magnetohydrodynamics 52, 277 (2016).CrossRefGoogle Scholar
  7. 7.
    I. M. Yachikov, O. I. Karandaeva, and T. P. Larina, Simulation of Electrical Eddy Flows in the Bath of a DC Electric Arc Furnace (Magnitogorsk. Gos. Tekh. Univ., Magnitogorsk, 2008).Google Scholar
  8. 8.
    S. Yu. Khripchenko, Doctoral Dissertation in Engineering (Perm State Univ., Perm, 2007).Google Scholar
  9. 9.
    V. Shatrov and G. Gerbeth, Magnetohydrodynamics 48, 469 (2012).CrossRefGoogle Scholar
  10. 10.
    A. Kharicha, I. Teplyakov, Yu. Ivochkin, et al., Exp. Therm. Fluid Sci. 62, 192 (2015).CrossRefGoogle Scholar
  11. 11.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1999).zbMATHGoogle Scholar
  12. 12.
    A. G. Sveshnikov, A. N. Bogolyubov, and V. V. Kravtsov, Lectures on Mathematical Physics (Nauka, Moscow, 1993).zbMATHGoogle Scholar
  13. 13.
    H. Bateman and A. Erdélyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol.1.Google Scholar
  14. 14.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products (Fizmatgiz, Moscow, 1963).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Joint Institute for High TemperaturesMoscowRussia

Personalised recommendations