Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 527–534 | Cite as

Electromagnetic Waves in a Medium with Screw Dislocations

Theoretical and Mathematical Physics
  • 7 Downloads

Abstract

It is shown that in a medium with screw dislocations oriented predominantly along one axis the rotational velocity of the plane of polarization of an electromagnetic wave is much greater when it propagates in the direction perpendicular to this axis than in the parallel direction. For a given dislocation density tensor, the conditions under which the rotational velocity of the plane of polarization of the electromagnetic wave reaches its maximum are found.

Keywords

condensed matter dislocations electrodynamics geometric optics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Kröner, Continuum Theory of Defects. Series of Lectures Held at the Summer School on the Physics of Defects (Les Houches, 1980).Google Scholar
  2. 2.
    A Gauge Theory of Dislocations and Disclinations, Ed. by A. Kadić and G. B. Edelen (Springer, 1983).MATHGoogle Scholar
  3. 3.
    R. Kupferman, M. Moshe, and J. P. Solomon, Arch. Ration. Mech. Anal. 216, 1009 (2015).MathSciNetCrossRefGoogle Scholar
  4. 4.
    RAAG Memoirs of the Unifying Study of Basic Problems in Engineering and Physical Sciences by Means of Geometry, Ed. by K. Kondō (Tokyo, 1955–1968), Vols. 1–4.Google Scholar
  5. 5.
    M. Ohnami, C. Iwashimizu, K. Genka, et al., Introduction to Micromechanics (Moscow, 1987).Google Scholar
  6. 6.
    K. Viswanathan and S. Chandrasekar, J. Appl. Phys. 116, 245103 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    F. Hehl and M. Lazar, Found. Physics 40, 1298 (2010).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structural Strain Levels of Solid Bodies (Novosibisrk, 1985).MATHGoogle Scholar
  9. 9.
    P. I. Pronin and N. Ed. Smirnov, Moscow Univ. Phys. Bull. 71, 155 (2016). https://doi.org/10.3103/S0027134916020089ADSCrossRefGoogle Scholar
  10. 10.
    P. I. Pronin and N. Ed. Smirnov, Moscow Univ. Phys. Bull. 71, 349 (2016). https://doi.org/10.3103/S0027134916040160ADSCrossRefGoogle Scholar
  11. 11.
    S. M. Rytov, Dokl. Akad. Nauk SSSR 18 (4), 263 (1939).Google Scholar
  12. 12.
    S. M. Rytov, Tr. Fiz. Inst. Akad. Nauk SSSR 2 (1), 41 (1940).Google Scholar
  13. 13.
    D. D. Ivanenko, P. I. Pronin, and G. A. Sardanashvili, Gauge Theory of Gravity (Moscow, 1985).Google Scholar
  14. 14.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry (Moscow, 1979).MATHGoogle Scholar
  15. 15.
    R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).Google Scholar
  16. 16.
    R. A. Malygin, Fiz. Tverd. Tela 31, 175 (1989).Google Scholar
  17. 17.
    N. I. Noskova, A. I. Zhuravleva, N. F. Vil’danova, et al., Fiz. Met. Metalloved. 64, 554 (1987).Google Scholar
  18. 18.
    G. V. Vladimirova, G. A. Malygin, and D. G. Ryvkina, Fiz. Met. Metalloved. 67, 380 (1989).Google Scholar
  19. 19.
    V. V. Rybin, N. Yu. Zolotarevskii, and I. M. Zhukovskii, Fiz. Met. Metalloved. 69, 5 (1990).Google Scholar
  20. 20.
    D. A. Jenkins, T. S. Plaskett, and P. Chaudhari, Philos. Mag. A 39, 237 (1979).ADSCrossRefGoogle Scholar
  21. 21.
    M. Berezin, E. O. Kazmenetskii, and R. Shavit, J. Opt. 14, 125602 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    V. I. Alshits, E. V. Darinskaya, V. A. Morozov, V. M. Kats, and A. A. Lukin, Phys. Solid State 55, 2289 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations