Skip to main content
Log in

Pressure fluctuations within a turbulent gas flow and their interaction with a shock wave

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The interaction of a shock wave with a turbulent air flow is investigated experimentally. The turbulence was created with the aid of a grid. On its reflection from a perforated disc the wave propagated through a turbulent flow. The Mach number of the incident shock was equal to 1.9–4, the Mach number of the reflected wave was equal to 1.6–2.5. We found the autocorrelation functions of pressure fluctuations and their phase diagrams. The turbulent length scale of pressure fluctuations behind the incident shock was determined. The appropriate quantity behind the reflected wave is less of an order as compared with the previous case. It is established that the pressure behind the reflected wave in the turbulent flow is 7–8% higher as compared with the pressure in the laminar flow, if other conditions are the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. G. Kovasznay, J. Aeronaut. Sci. 20(10), 657 (1953).

    MATH  Google Scholar 

  2. A. L. Kistler, Phys. Fluids 2(3), 291 (1959).

    Article  ADS  Google Scholar 

  3. A. Demetriades, Phys. Fluids 13(7), 1673 (1970).

    Article  ADS  Google Scholar 

  4. D. P. Shatto, J. A. Besly, G. P. Peterson, et al., AIAA J. 9(5), 826 (1971).

    Article  Google Scholar 

  5. A. N. Sekundov, Mekh. Zhidk. Gaza, no. 2, 8 1974.

    Google Scholar 

  6. G. I. Derbunovich, A. S. Zemskaya, A. U. Repik, and A. P. Sosedko, Uchen. Zap. TsAGI 13(1), 11 (1982).

    Google Scholar 

  7. N. P. Mikhailova, A. U. Repik, and A. P. Sosedko, Mekh. Zhidk. Gaza, no. 3, 163 (1994).

    Google Scholar 

  8. N. P. Mikhailova, A. U. Repik, and A. P. Sosedko, Mekh. Zhidk. Gaza, no. 1, 79 (2001).

    Google Scholar 

  9. G. Comte-Bellot and S. Corrsin, J. Fluid Mech. 25(4), 657 (1966).

    Article  ADS  Google Scholar 

  10. J. H. Agui, G. Briassulis, and Y. Andreopoulos, J. Fluid Mech. 524, 143 (2005).

    Article  ADS  MATH  Google Scholar 

  11. H. Wintrich and W. Merzkirch, Shock Waves IV. Proc. 19th Int. Symp. on Shock Waves. Marseille, France, 26–30 July 1993, p. 319.

  12. D. Vitkin, W. Merzkirch, and N. Fomin, J. Visualization 1(1), 29 (1998).

    Article  Google Scholar 

  13. O. A. Azarova, Zh. Vychisl. Mat., Mat. Fiz. 44,(3), 532 (2004).

    MathSciNet  Google Scholar 

  14. D. Takagi, S. Ito, K. Takeya, A. Sasoh et al., Proc. ISSW 28. Manchester, 17–22 July, 2011.

    Google Scholar 

  15. R. Strehlow and A. Cohen, J. Chem. Phys. 30(1), 257 (1959).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.I. Dokukina, E.N. Terentiev, L.S. Shtemenko, F.V. Shugaev, 2013, published in Vestnik Moskovskogo Universiteta. Fizika, 2013, No. 2, pp. 24–28.

The article was translated by the authors.

About this article

Cite this article

Dokukina, O.I., Terentiev, E.N., Shtemenko, L.S. et al. Pressure fluctuations within a turbulent gas flow and their interaction with a shock wave. Moscow Univ. Phys. 68, 118–122 (2013). https://doi.org/10.3103/S0027134913020033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134913020033

Keywords

Navigation