Moscow University Mechanics Bulletin

, Volume 74, Issue 5, pp 128–132 | Cite as

Theory of Ideal Disperse Systems

  • Ya. D. YankovEmail author
Brief Communication


The possibility of constructing a mathematical model of disperse systems is discussed. This model is similar to those used in the theory of ideal gases.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ya. D. Yankov, Modern Theory of Disperse Systems, available from VINITI, No. 123-B2016 (Moscow, 2016).Google Scholar
  2. 2.
    Ya. D. Yankov, “Boundary Conditions in the Modern Theory of Disperse Systems,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 1, 33–39 (2018) [Moscow Univ. Mech. Bull. 73 (1), 1–6 (2018)].CrossRefGoogle Scholar
  3. 3.
    B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Application to Gas Dynamics (Nauka, Moscow, 1978; Amer. Math. Soc., Providence, 1983).Google Scholar
  4. 4.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).Google Scholar
  5. 5.
    S. K. Zhdanov and B. A. Trubnikov, Quasigase Unstable Media (Nauka, Moscow, 1991) [in Russian].Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations