Advertisement

Moscow University Mathematics Bulletin

, Volume 74, Issue 5, pp 182–188 | Cite as

Upper Estimate of Partial Prediction Degree for General Regular Superevents

  • I. K. VedernikovEmail author
Article
  • 2 Downloads

Abstract

A machine predicts the next character in the input sequence if it outputs that character at the previous moment of time. In this paper we study the upper bound of prediction degree for some general regular superevents. The paper presents an upper bound for superevents predicted by the machine representing the superevents. In addition, the class of superevents is presented which this bound is attained for.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The author is grateful to Prof. E. E. Gasanov for formulation of the problem and help in the work.

References

  1. 1.
    A. G. Verenikin and E. E. Gasanov, “On Automata-Based Determinization of Sets of Superwords,” Diskret. Matem. 18 (2), 84 (2006).CrossRefGoogle Scholar
  2. 2.
    E. E. Gasanov, “Prediction of Periodic Superevents by Automata,” Intellekt. Sistem. Teor. Prilozh. 19 (1), 23 (2015).MathSciNetGoogle Scholar
  3. 3.
    A. A. Mastikhina, “On Partial Guessing of Superwords,” Intellekt. Sistem. Teor. Prilozh. 11 (1-4), 561 (2007).MathSciNetGoogle Scholar
  4. 4.
    A. A. Mastikhina, “Criterion of Partial Prediction of General Regular Superevents,” Diskret. Matem. 23 (4), 103Google Scholar
  5. 5.
    I. K. Vedernikov, “Analysis of the Algorithm Specifying Output Function of Prediction Machine,” Intellekt. Sistem. Teor. Prilozh. 20 (3), 103 (2016).Google Scholar
  6. 6.
    B. V. Kudryavtsev, S. V. Aleshin, and A. S. Podkolzin, Introduction to Automata Theory (Nauka, Moscow, 1985) [in Russian].zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations